Astroid

Astroid
The hypocycloid construction of the astroid.
Astroid x23 + y23 = r23 as the common envelope of a family of ellipses of equation (xa)2 + (yb)2 = r2, where a + b = 1.
The envelope of a ladder (coloured lines in the top-right quadrant) sliding down a vertical wall, and its reflections (other quadrants) is an astroid. The midpoints trace out a circle while other points trace out ellipses similar to the previous figure. In the SVG file, hover over a ladder to highlight it.
Astroid as an evolute of ellipse

In mathematics, an astroid is a particular type of roulette curve: a hypocycloid with four cusps. Specifically, it is the locus of a point on a circle as it rolls inside a fixed circle with four times the radius.[1] By double generation, it is also the locus of a point on a circle as it rolls inside a fixed circle with 4/3 times the radius. It can also be defined as the envelope of a line segment of fixed length that moves while keeping an end point on each of the axes. It is therefore the envelope of the moving bar in the Trammel of Archimedes.

Its modern name comes from the Greek word for "star". It was proposed, originally in the form of "Astrois", by Joseph Johann von Littrow in 1838.[2][3] The curve had a variety of names, including tetracuspid (still used), cubocycloid, and paracycle. It is nearly identical in form to the evolute of an ellipse.

  1. ^ Yates
  2. ^ J. J. v. Littrow (1838). "§99. Die Astrois". Kurze Anleitung zur gesammten Mathematik. Wien. p. 299.
  3. ^ Loria, Gino (1902). Spezielle algebraische und transscendente ebene kurven. Theorie und Geschichte. Leipzig. pp. 224.{{cite book}}: CS1 maint: location missing publisher (link)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne