Alternative names | Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics |
---|---|
Location(s) | Antarctica |
Telescope style | balloon-borne telescope cosmic microwave background experiment radio telescope |
Website | cmb |
Related media on Commons | |
Part of a series on |
Physical cosmology |
---|
BOOMERanG experiment (Balloon Observations Of Millimetric Extragalactic Radiation And Geophysics) was an experiment that flew a telescope on a (high-altitude) balloon and measured the cosmic microwave background radiation of a part of the sky during three sub-orbital flights. It was the first experiment to make large, high-fidelity images of the CMB temperature anisotropies, and is best known for the discovery in 2000 that the geometry of the universe is close to flat,[1] with similar results from the competing MAXIMA experiment.
By using a telescope which flew at over 42,000 meters high, it was possible to reduce the atmospheric absorption of microwaves to a minimum. This allowed massive cost reduction compared to a satellite probe, though only a tiny part of the sky could be scanned.
The first was a test flight over North America in 1997. In the two subsequent flights in 1998 and 2003 the balloon was launched from McMurdo Station in the Antarctic. It was carried by the Polar vortex winds in a circle around the South Pole, returning after two weeks. From this phenomenon the telescope took its name.
The BOOMERanG team was led by Andrew E. Lange of Caltech and Paolo de Bernardis of the University of Rome La Sapienza.[2]