BRST quantization

In theoretical physics, the BRST formalism, or BRST quantization (where the BRST refers to the last names of Carlo Becchi, Alain Rouet, Raymond Stora and Igor Tyutin) denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.

The BRST global supersymmetry introduced in the mid-1970s was quickly understood to rationalize the introduction of these Faddeev–Popov ghosts and their exclusion from "physical" asymptotic states when performing QFT calculations. Crucially, this symmetry of the path integral is preserved in loop order, and thus prevents introduction of counterterms which might spoil renormalizability of gauge theories. Work by other authors [by whom?Discuss] a few years later related the BRST operator to the existence of a rigorous alternative to path integrals when quantizing a gauge theory.

Only in the late 1980s, when QFT was reformulated in fiber bundle language for application to problems in the topology of low-dimensional manifolds (topological quantum field theory), did it become apparent that the BRST "transformation" is fundamentally geometrical in character. In this light, "BRST quantization" becomes more than an alternate way to arrive at anomaly-cancelling ghosts. It is a different perspective on what the ghost fields represent, why the Faddeev–Popov method works, and how it is related to the use of Hamiltonian mechanics to construct a perturbative framework. The relationship between gauge invariance and "BRST invariance" forces the choice of a Hamiltonian system whose states are composed of "particles" according to the rules familiar from the canonical quantization formalism. This esoteric consistency condition therefore comes quite close to explaining how quanta and fermions arise in physics to begin with.

In certain cases, notably gravity and supergravity, BRST must be superseded by a more general formalism, the Batalin–Vilkovisky formalism.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne