Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells.[1] This takes place through a pilus.[2][full citation needed] It is a parasexual mode of reproduction in bacteria.
Classical E. coli bacterial conjugation is often regarded as the bacterial equivalent of sexual reproduction or mating, since it involves the exchange of genetic material. However, it is not sexual reproduction, since no exchange of gamete occurs, and indeed no generation of a new organism: instead, an existing organism is transformed. During classical E. coli conjugation, the donor cell provides a conjugative or mobilizable genetic element that is most often a plasmid or transposon.[5] Most conjugative plasmids have systems ensuring that the recipient cell does not already contain a similar element.
The genetic information transferred is often beneficial to the recipient. Benefits may include antibiotic resistance, xenobiotic tolerance or the ability to use new metabolites.[1] Other elements can be detrimental, and may be viewed as bacterial parasites.
Conjugation in Escherichia coli by spontaneous zygogenesis[6] and in Mycobacterium smegmatis by distributive conjugal transfer[7][8] differ from the better studied classical E. coli conjugation in that these cases involve substantial blending of the parental genomes.