Basis pursuit

Basis pursuit is the mathematical optimization problem of the form

where x is a N-dimensional solution vector (signal), y is a M-dimensional vector of observations (measurements), A is a M × N transform matrix (usually measurement matrix) and M < N. Basis pursuit is NP-hard.[1]

It is usually applied in cases where there is an underdetermined system of linear equations y = Ax that must be exactly satisfied, and the sparsest solution in the L1 sense is desired.

When it is desirable to trade off exact equality of Ax and y in exchange for a sparser x, basis pursuit denoising is preferred.

Basis pursuit problems can be converted to linear programming problems in polynomial time and vice versa, making the two types of problems polynomially equivalent.[2]

  1. ^ Natarajan, B. K. (April 1995). "Sparse Approximate Solutions to Linear Systems". SIAM Journal on Computing. 24 (2): 227–234. doi:10.1137/S0097539792240406. ISSN 0097-5397.
  2. ^ A. M. Tillmann Equivalence of Linear Programming and Basis Pursuit, PAMM (Proceedings in Applied Mathematics and Mechanics) Volume 15, 2015, pp. 735-738, DOI: 10.1002/PAMM.201510351

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne