In game theory, a Bayesian game is a strategic decision-making model which assumes players have incomplete information. Players may hold private information relevant to the game, meaning that the payoffs are not common knowledge.[1] Bayesian games model the outcome of player interactions using aspects of Bayesian probability. They are notable because they allowed the specification of the solutions to games with incomplete information for the first time in game theory.
Hungarian economist John C. Harsanyi introduced the concept of Bayesian games in three papers from 1967 and 1968:[2][3][4] He was awarded the Nobel Memorial Prize in Economic Sciences for these and other contributions to game theory in 1994. Roughly speaking, Harsanyi defined Bayesian games in the following way: players are assigned a set of characteristics by nature at the start of the game. By mapping probability distributions to these characteristics and by calculating the outcome of the game using Bayesian probability, the result is a game whose solution is, for technical reasons, far easier to calculate than a similar game in a non-Bayesian context.