Beam-powered propulsion

Beam-powered propulsion, also known as directed energy propulsion, is a class of aircraft or spacecraft propulsion that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a microwave or a laser beam, and it is either pulsed or continuous. A continuous beam lends itself to thermal rockets, photonic thrusters, and light sails. In contrast, a pulsed beam lends itself to ablative thrusters and pulse detonation engines.[1]

The rule of thumb that is usually quoted is that it takes a megawatt of power beamed to a vehicle per kg of payload while it is being accelerated to permit it to reach low Earth orbit.[2]

More speculative designs, using mass ("micro-pellet") beams, would allow for reaching the edge of the solar gravity lens, or even nearby stars, in decades.

Other than launching to orbit, applications for moving around the world quickly have also been proposed.

  1. ^ Breakthrough (2018-05-29), Progress in beamed energy propulsion | Kevin Parkin, retrieved 2018-06-07
  2. ^ "Archived copy". Archived from the original on 2011-09-28. Retrieved 2009-08-31.{{cite web}}: CS1 maint: archived copy as title (link)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne