Bullet Cluster | |
---|---|
![]() X-ray photo by Chandra X-ray Observatory. Exposure time was 140 hours. The scale is shown in megaparsecs. Redshift (z) = 0.3, meaning its light has wavelengths stretched by a factor of 1.3. | |
Observation data (Epoch J2000) | |
Constellation(s) | Carina |
Right ascension | 06h 58m 37.9s |
Declination | −55° 57′ 0″ |
Number of galaxies | ~40 |
Redshift | 0.296[1] |
Distance | 1.141 Gpc (3.7 billion light-years).[2] |
ICM temperature | 17.4 ± 2.5 keV |
X-ray luminosity | 1.4 ± 0.3 × 1039 h50−2 joule/s (bolometric)[1] |
X-ray flux | 5.6 ± 0.6 × 10−19 watt/cm2 (0.1–2.4 keV)[1] |
Other designations | |
1E 0657-56, 1E 0657-558 |
The Bullet Cluster (1E 0657-56) consists of two colliding clusters of galaxies. Strictly speaking, the name Bullet Cluster refers to the smaller subcluster, moving away from the larger one. It is at a comoving radial distance of 1.141 Gpc (3.72 billion light-years).[2]
The object is of a particular note for astrophysicists, because gravitational lensing studies of the Bullet Cluster are claimed to provide strong evidence for the existence of dark matter.[3][4] Observations of other galaxy cluster collisions, such as MACS J0025.4-1222, similarly support the existence of dark matter.[5]