Centaur (rocket stage)

Centaur
A single-engine Centaur III being raised for mating to an Atlas V rocket
ManufacturerUnited Launch Alliance
Used on
Current
Atlas V: Centaur III
Vulcan: Centaur V
Historical
Atlas-Centaur
Saturn I
Titan III
Titan IV
Atlas II
Atlas III
Shuttle-Centaur (not flown)
Associated stages
DerivativesAdvanced Cryogenic Evolved Stage (cancelled, not flown)
Launch history
StatusActive
Total launches273 as of October 2024[1]
Successes
(stage only)
254
Failed15
Lower stage
failed
4
First flightMay 9, 1962; 62 years ago (May 9, 1962)
Centaur III
Height12.68 m (499 in)[2]
Diameter3.05 m (120 in)
Empty mass2,247 kg (4,954 lb), single engine
2,462 kg (5,428 lb), dual engine
Propellant mass20,830 kg (45,920 lb)
Powered by1 × RL10A, 2 × RL10A or 1 × RL10C
Maximum thrust99.2 kN (22,300 lbf), per engine
Specific impulse450.5 seconds (4.418 km/s)
Burn time904 seconds
PropellantLOX / LH2
Centaur V
Height12.6 m (41 ft)[3]
Diameter5.4 m (18 ft)
Propellant mass54,000 kg (120,000 lb)[4]
Powered by2 × RL10C[5]
Maximum thrust212 kN (48,000 lbf)[6]
Specific impulse453.8 s (4.450 km/s)[6]
Burn time1,077 seconds[7]
PropellantLOX / LH2

The Centaur is a family of rocket propelled upper stages that has been in use since 1962. It is currently produced by U.S. launch service provider United Launch Alliance, with one main active version and one version under development. The 3.05 m (10 ft) diameter Common Centaur/Centaur III flies as the upper stage of the Atlas V launch vehicle, and the 5.4 m (18 ft) diameter Centaur V has been developed as the upper stage of ULA's new Vulcan rocket.[8][9] Centaur was the first rocket stage to use liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, a high-energy combination that is ideal for upper stages but has significant handling difficulties.[10]

  1. ^ Cite error: The named reference GSPCentaur was invoked but never defined (see the help page).
  2. ^ "Atlas V Launch Services User's Guide" (PDF). United Launch Alliance. March 2010. Archived from the original (PDF) on March 6, 2012. Retrieved July 9, 2015.
  3. ^ Kanayama, Lee (May 9, 2022). "As Centaur turns 60 years old, ULA prepares to evolve Centaur V". NASASpaceFlight.com. Retrieved October 2, 2024.
  4. ^ @torybruno (February 13, 2025). "A cool family photo. The last Centaur III (Dad), the 120k High Orbit Centaur V (Son) and our newest addition: 85k LEO Centaur V (little brother)" (Tweet). Retrieved February 13, 2025 – via Twitter.
  5. ^ "United Launch Alliance Selects Aerojet Rocketdyne's RL10 Engine". ULA. May 11, 2018. Archived from the original on May 12, 2018. Retrieved May 13, 2018.
  6. ^ a b "Aerojet Rocketdyne RL10 Propulsion System" (PDF). Aerojet Rocketdyne. Archived (PDF) from the original on June 29, 2019. Retrieved June 29, 2019.
  7. ^ Peller, Mark; Wentz, Gary L.; Burkholder, Tom, eds. (October 16, 2023). "Vulcan Launch Systems User's Guide" (PDF). United Launch Alliance. Archived (PDF) from the original on September 24, 2024. Retrieved October 1, 2024.
  8. ^ Berger, Eric (December 11, 2018). "Getting Vulcan up to speed: Part one of our interview with Tory Bruno". Ars Technica. Retrieved December 12, 2018. Centaur 3 (which flies on the Atlas V rocket) is 3.8 meters in diameter. The very first Centaur we fly on Vulcan will go straight to 5.4 meters in diameter.
  9. ^ "Vulcan Centaur". United Launch Alliance. 2018. Retrieved December 12, 2018.
  10. ^ Helen T. Wells; Susan H. Whiteley; Carrie E. Karegeannes. "Launch Vehicles". Origin of NASA Names. NASA Science and Technical Information Office. p. 11. Archived from the original on July 14, 2019. Retrieved March 29, 2019. because it proposed to make first use of the theoretically powerful but problem-making liquid hydrogen as fuel.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne