Clifford torus

A stereographic projection of a Clifford torus performing a simple rotation
Topologically a rectangle is the fundamental polygon of a torus, with opposite edges sewn together.

In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles S1
a
and S1
b
(in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdon Clifford. The Clifford Torus is embedded in R4, as opposed to in R3. This is necessary since S1
a
and S1
b
each exists in their own independent embedding space R2
a
and R2
b
, the resulting product space will be R4 rather than R3. The historically popular view that the Cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis z available to it after the first circle consumes x and y.

Stated another way, a torus embedded in R3 is an asymmetric reduced-dimension projection of the maximally symmetric Clifford torus embedded in R4. The relationship is similar to that of projecting the edges of a cube onto a sheet of paper. Such a projection creates a lower-dimensional image that accurately captures the connectivity of the cube edges, but also requires the arbitrary selection and removal of one of the three fully symmetric and interchangeable axes of the cube.

If S1
a
and S1
b
each has a radius of 1/2, their Clifford torus product will fit perfectly within the unit 3-sphere S3, which is a 3-dimensional submanifold of R4. When mathematically convenient, the Clifford torus can be viewed as residing inside the complex coordinate space C2, since C2 is topologically equivalent to R4.

The Clifford torus is an example of a square torus, because it is isometric to a square with opposite sides identified. (Some video games, including Asteroids, are played on a square torus; anything that moves off one edge of the screen reappears on the opposite edge with the same orientation.) It is further known as a Euclidean 2-torus (the "2" is its topological dimension); figures drawn on it obey Euclidean geometry[clarification needed] as if it were flat, whereas the surface of a common "doughnut"-shaped torus is positively curved on the outer rim and negatively curved on the inner. Although having a different geometry than the standard embedding of a torus in three-dimensional Euclidean space, the square torus can also be embedded into three-dimensional space, by the Nash embedding theorem; one possible embedding modifies the standard torus by a fractal set of ripples running in two perpendicular directions along the surface.[1]

  1. ^ Borrelli, V.; Jabrane, S.; Lazarus, F.; Thibert, B. (April 2012), "Flat tori in three-dimensional space and convex integration", Proceedings of the National Academy of Sciences, 109 (19): 7218–7223, doi:10.1073/pnas.1118478109, PMC 3358891, PMID 22523238.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne