Geometry |
---|
Geometers |
In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Complex geometry sits at the intersection of algebraic geometry, differential geometry, and complex analysis, and uses tools from all three areas. Because of the blend of techniques and ideas from various areas, problems in complex geometry are often more tractable or concrete than in general. For example, the classification of complex manifolds and complex algebraic varieties through the minimal model program and the construction of moduli spaces sets the field apart from differential geometry, where the classification of possible smooth manifolds is a significantly harder problem. Additionally, the extra structure of complex geometry allows, especially in the compact setting, for global analytic results to be proven with great success, including Shing-Tung Yau's proof of the Calabi conjecture, the Hitchin–Kobayashi correspondence, the nonabelian Hodge correspondence, and existence results for Kähler–Einstein metrics and constant scalar curvature Kähler metrics. These results often feed back into complex algebraic geometry, and for example recently the classification of Fano manifolds using K-stability has benefited tremendously both from techniques in analysis and in pure birational geometry.
Complex geometry has significant applications to theoretical physics, where it is essential in understanding conformal field theory, string theory, and mirror symmetry. It is often a source of examples in other areas of mathematics, including in representation theory where generalized flag varieties may be studied using complex geometry leading to the Borel–Weil–Bott theorem, or in symplectic geometry, where Kähler manifolds are symplectic, in Riemannian geometry where complex manifolds provide examples of exotic metric structures such as Calabi–Yau manifolds and hyperkähler manifolds, and in gauge theory, where holomorphic vector bundles often admit solutions to important differential equations arising out of physics such as the Yang–Mills equations. Complex geometry additionally is impactful in pure algebraic geometry, where analytic results in the complex setting such as Hodge theory of Kähler manifolds inspire understanding of Hodge structures for varieties and schemes as well as p-adic Hodge theory, deformation theory for complex manifolds inspires understanding of the deformation theory of schemes, and results about the cohomology of complex manifolds inspired the formulation of the Weil conjectures and Grothendieck's standard conjectures. On the other hand, results and techniques from many of these fields often feed back into complex geometry, and for example developments in the mathematics of string theory and mirror symmetry have revealed much about the nature of Calabi–Yau manifolds, which string theorists predict should have the structure of Lagrangian fibrations through the SYZ conjecture, and the development of Gromov–Witten theory of symplectic manifolds has led to advances in enumerative geometry of complex varieties.
The Hodge conjecture, one of the millennium prize problems, is a problem in complex geometry.[1]