Composite material

Concrete is a mixture of adhesive and aggregate, giving a robust, strong material that is very widely used.
Plywood is used widely in construction
Composite sandwich structure panel used for testing at NASA
A black carbon fibre (used as a reinforcement component) compared to a human hair
Composites are formed by combining materials together to form an overall structure with properties that differ from that of the individual components

A composite or composite material (also composition material) is a material which is produced from two or more constituent materials.[1] These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions. Composite materials with more than one distinct layer are called composite laminates.

Typical engineered composite materials are made up of a binding agent forming the matrix and a filler material (particulates or fibres) giving substance, e.g.:

Composite materials can be less expensive, lighter, stronger or more durable than common materials. Some are inspired by biological structures found in plants and animals.[3] Robotic materials are composites that include sensing, actuation, computation, and communication components.[4][5]

Composite materials are used for construction and technical structures such as boat hulls, swimming pool panels, racing car bodies, shower stalls, bathtubs, storage tanks, imitation granite, and cultured marble sinks and countertops.[6][7] They are also being increasingly used in general automotive applications.[8]

  1. ^ "What are Composites". Discover Composites. Archived from the original on 2021-05-22. Retrieved 2020-12-18.
  2. ^ Zhou, M.Y.; Ren, L.B.; Fan, L.L.; Zhang, Y.W.X.; Lu, T.H.; Quan, G.F.; Gupta, M. (October 2020). "Progress in research on hybrid metal matrix composites". Journal of Alloys and Compounds. 838: 155274. doi:10.1016/j.jallcom.2020.155274.
  3. ^ Nepal, Dhriti; Kang, Saewon; Adstedt, Katarina M.; Kanhaiya, Krishan; Bockstaller, Michael R.; Brinson, L. Catherine; Buehler, Markus J.; Coveney, Peter V.; Dayal, Kaushik; El-Awady, Jaafar A.; Henderson, Luke C.; Kaplan, David L.; Keten, Sinan; Kotov, Nicholas A.; Schatz, George C.; Vignolini, Silvia; Vollrath, Fritz; Wang, Yusu; Yakobson, Boris I.; Tsukruk, Vladimir V.; Heinz, Hendrik (January 2023). "Hierarchically structured bioinspired nanocomposites". Nature Materials. 22 (1): 18–35. Bibcode:2023NatMa..22...18N. doi:10.1038/s41563-022-01384-1. PMID 36446962.
  4. ^ McEvoy, M. A.; Correll, N. (19 March 2015). "Materials that couple sensing, actuation, computation, and communication". Science. 347 (6228): 1261689. Bibcode:2015Sci...34761689M. doi:10.1126/science.1261689. PMID 25792332.
  5. ^ "Autonomous Materials Will Let Future Robots Change Color And Shift Shape". popsci.com. 20 March 2015. Archived from the original on 27 September 2017. Retrieved 3 May 2018.
  6. ^ "Composites | Composite Materials". Mar-Bal, Inc. 2013-10-15. Archived from the original on 2015-11-13. Retrieved 2020-12-18.
  7. ^ "Applications | Composites UK". compositesuk.co.uk. Archived from the original on 2015-02-26. Retrieved 2020-12-18.
  8. ^ "Achieving Class A Appearance On Fiber-Reinforced Substrates". www.coatingstech-digital.org. Archived from the original on 2021-09-20. Retrieved 2021-06-24.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne