Computability theory

Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory.

Basic questions addressed by computability theory include:

  • What does it mean for a function on the natural numbers to be computable?
  • How can noncomputable functions be classified into a hierarchy based on their level of noncomputability?

Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. The study of which mathematical constructions can be effectively performed is sometimes called recursive mathematics.[a]

  1. ^ Cite error: The named reference Ershov-Goncharov-Nerode-Remmel-1998 was invoked but never defined (see the help page).


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne