In geometry, two or more objects are said to be concentric when they share the same center. Any pair of (possibly unalike) objects with well-defined centers can be concentric, including circles, spheres, regular polygons, regular polyhedra, parallelograms, cones, conic sections, and quadrics.[1]
Geometric objects are coaxial if they share the same axis (line of symmetry). Geometric objects with a well-defined axis include circles (any line through the center), spheres, cylinders,[2] conic sections, and surfaces of revolution.
Concentric objects are often part of the broad category of whorled patterns, which also includes spirals (a curve which emanates from a point, moving farther away as it revolves around the point).
Spheres: Apostol (2013)
Regular polygons: Hardy, Godfrey Harold (1908), A Course of Pure Mathematics, The University Press, p. 107
Regular polyhedra: Gillard, Robert D. (1987), Comprehensive Coordination Chemistry: Theory & background, Pergamon Press, pp. 137, 139, ISBN 9780080262321.