Conservative vector field

In vector calculus, a conservative vector field is a vector field that is the gradient of some function.[1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the vector field under the line integral being conservative. A conservative vector field is also irrotational; in three dimensions, this means that it has vanishing curl. An irrotational vector field is necessarily conservative provided that the domain is simply connected.

Conservative vector fields appear naturally in mechanics: They are vector fields representing forces of physical systems in which energy is conserved.[2] For a conservative system, the work done in moving along a path in a configuration space depends on only the endpoints of the path, so it is possible to define potential energy that is independent of the actual path taken.

  1. ^ Marsden, Jerrold; Tromba, Anthony (2003). Vector calculus (Fifth ed.). W.H.Freedman and Company. pp. 550–561.
  2. ^ George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 6th edition, Elsevier Academic Press (2005)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne