Consistent histories

In quantum mechanics, the consistent histories or simply "consistent quantum theory"[1] interpretation generalizes the complementarity aspect of the conventional Copenhagen interpretation. The approach is sometimes called decoherent histories[2] and in other work decoherent histories are more specialized.[1]

First proposed by Robert Griffiths in 1984,[3][4] this interpretation of quantum mechanics is based on a consistency criterion that then allows probabilities to be assigned to various alternative histories of a system such that the probabilities for each history obey the rules of classical probability while being consistent with the Schrödinger equation. In contrast to some interpretations of quantum mechanics, the framework does not include "wavefunction collapse" as a relevant description of any physical process, and emphasizes that measurement theory is not a fundamental ingredient of quantum mechanics. Consistent histories allows predictions related to the state of the universe needed for quantum cosmology.[5]

  1. ^ a b Hohenberg, P. C. (2010-10-05). "Colloquium : An introduction to consistent quantum theory". Reviews of Modern Physics. 82 (4): 2835–2844. arXiv:0909.2359. doi:10.1103/RevModPhys.82.2835. ISSN 0034-6861.
  2. ^ Griffiths, Robert B. "The Consistent Histories Approach to Quantum Mechanics". Stanford Encyclopedia of Philosophy. Stanford University. Retrieved 2016-10-22.
  3. ^ Griffiths, Robert B. (1984). "Consistent histories and the interpretation of quantum mechanics". Journal of Statistical Physics. 36 (1–2). Springer Science and Business Media LLC: 219–272. Bibcode:1984JSP....36..219G. doi:10.1007/bf01015734. ISSN 0022-4715. S2CID 119871795.
  4. ^ Griffiths, Robert B. (2003). Consistent quantum theory (First published in paperback ed.). Cambridge: Cambridge Univ. Press. ISBN 978-0-521-53929-6.
  5. ^ Dowker, Fay; Kent, Adrian (1995-10-23). "Properties of Consistent Histories". Physical Review Letters. 75 (17): 3038–3041. arXiv:gr-qc/9409037. Bibcode:1995PhRvL..75.3038D. doi:10.1103/physrevlett.75.3038. ISSN 0031-9007. PMID 10059479. S2CID 17359542.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne