Constraint programming

Constraint programming (CP)[1] is a paradigm for solving combinatorial problems that draws on a wide range of techniques from artificial intelligence, computer science, and operations research. In constraint programming, users declaratively state the constraints on the feasible solutions for a set of decision variables. Constraints differ from the common primitives of imperative programming languages in that they do not specify a step or sequence of steps to execute, but rather the properties of a solution to be found. In addition to constraints, users also need to specify a method to solve these constraints. This typically draws upon standard methods like chronological backtracking and constraint propagation, but may use customized code like a problem-specific branching heuristic.

Constraint programming takes its root from and can be expressed in the form of constraint logic programming, which embeds constraints into a logic program. This variant of logic programming is due to Jaffar and Lassez,[2] who extended in 1987 a specific class of constraints that were introduced in Prolog II. The first implementations of constraint logic programming were Prolog III, CLP(R), and CHIP.

Instead of logic programming, constraints can be mixed with functional programming, term rewriting, and imperative languages. Programming languages with built-in support for constraints include Oz (functional programming) and Kaleidoscope (imperative programming). Mostly, constraints are implemented in imperative languages via constraint solving toolkits, which are separate libraries for an existing imperative language.

  1. ^ Rossi, Francesca; Beek, Peter van; Walsh, Toby (2006-08-18). Handbook of Constraint Programming. Elsevier. ISBN 9780080463803.
  2. ^ Jaffar, Joxan, and J-L. Lassez. "Constraint logic programming." Proceedings of the 14th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 1987.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne