In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given (at least locally) as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.
Contact geometry is in many ways an odd-dimensional counterpart of symplectic geometry, a structure on certain even-dimensional manifolds. Both contact and symplectic geometry are motivated by the mathematical formalism of classical mechanics, where one can consider either the even-dimensional phase space of a mechanical system or constant-energy hypersurface, which, being codimension one, has odd dimension.