Convolution

Visual comparison of convolution, cross-correlation, and autocorrelation. For the operations involving function , and assuming the height of is 1.0, the value of the result at 5 different points is indicated by the shaded area below each point. The symmetry of is the reason and are identical in this example.

In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (). The term convolution refers to both the resulting function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result (see commutativity). Graphically, it expresses how the 'shape' of one function is modified by the other.

Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution () differs from cross-correlation () only in that either or is reflected about the y-axis in convolution; thus it is a cross-correlation of and , or and .[A] For complex-valued functions, the cross-correlation operator is the adjoint of the convolution operator.

Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations.[1]

The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).[citation needed] For example, periodic functions, such as the discrete-time Fourier transform, can be defined on a circle and convolved by periodic convolution. (See row 18 at DTFT § Properties.) A discrete convolution can be defined for functions on the set of integers.

Generalizations of convolution have applications in the field of numerical analysis and numerical linear algebra, and in the design and implementation of finite impulse response filters in signal processing.[citation needed]

Computing the inverse of the convolution operation is known as deconvolution.


Cite error: There are <ref group=upper-alpha> tags or {{efn-ua}} templates on this page, but the references will not show without a {{reflist|group=upper-alpha}} template or {{notelist-ua}} template (see the help page).

  1. ^ Bahri, Mawardi; Ashino, Ryuichi; Vaillancourt, Rémi (2013). "Convolution Theorems for Quaternion Fourier Transform: Properties and Applications" (PDF). Abstract and Applied Analysis. 2013: 1–10. doi:10.1155/2013/162769. Archived (PDF) from the original on 2020-10-21. Retrieved 2022-11-11.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne