Cophonicity

Given two interacting atoms A and B, the cophonicity (/kfˈnɪsɪti/) of the A-B atomic pair is a measure of the overlap of the A and B contributions to a specific range of vibrational frequencies. In the field of condensed matter physics, cophonicity is a metric aimed at the parametrization of the dynamical interactions in terms of the atomic types forming the A-B pair. In connection with other electronic and structural descriptors, such as the covalency metric[1] or the distortion mode analysis[2] from group theory, the A-B pair cophonicity is a guide to properly select either A or B atomic species to tune specific vibrational frequencies of a given system. The cophonicity metric has been originally designed[3][4][5] for the study of the atomic motions in transition metal dichalcogenides, but its formulation is general and can be applied to any kind of system, irrespective of the chemical composition and stoichiometry.[6][7][8][9][10]

  1. ^ Cammarata, Antonio; Rondinelli, James M. (21 September 2014). "Covalent dependence of octahedral rotations in orthorhombic perovskite oxides". The Journal of Chemical Physics. 141 (11): 114704. Bibcode:2014JChPh.141k4704C. doi:10.1063/1.4895967. PMID 25240365.
  2. ^ Campbell, J.; Stokes, H.; Tanner, D.; Hatch, D. (2006). "ISODISPLACE: a web-based tool for exploring structural distortions". Journal of Applied Crystallography. 39 (4): 214804. doi:10.1107/S0021889806014075. S2CID 32096503.
  3. ^ Cammarata, Antonio; Polcar, Tomas (2015). "Tailoring Nanoscale Friction in MX2 Transition Metal Dichalcogenides". Inorg. Chem. 54 (12): 5739–5744. doi:10.1021/acs.inorgchem.5b00431. PMID 26000720.
  4. ^ Cammarata, Antonio; Polcar, Tomas (2015). "Electro-vibrational Coupling Effects on "Intrinsic Friction" in Transition Metal Dichalcogenides". RSC Adv. 5 (129): 106809–106818. Bibcode:2015RSCAd...5j6809C. doi:10.1039/c5ra24837j.
  5. ^ Cammarata, Antonio; Polcar, Tomas (2016). "Layering Effects on Low Frequency Modes in n-layered MX2 Transition Metal Dichalcogenides". Phys. Chem. Chem. Phys. 18 (6): 4807–4813. Bibcode:2016PCCP...18.4807C. doi:10.1039/c5cp06788j. PMID 26806673.
  6. ^ Hu, Tao; Hu, Minmin; Li, Zhaojin; Zhang, Hui; Zhang, Chao; Wang, Jiemin; Wang, Xiaohui (31 December 2015). "Covalency-Dependent Vibrational Dynamics in Two-Dimensional Titanium Carbides". The Journal of Physical Chemistry A. 119 (52): 12977–12984. Bibcode:2015JPCA..11912977H. doi:10.1021/acs.jpca.5b08626. PMID 26652906.
  7. ^ Banerjee, Tushar; Chattopadhyay, A. K. (2015-11-25). "Structural, mechanical and tribological properties of pulsed DC magnetron sputtered TiN–WSx/TiN bilayer coating". Surface and Coatings Technology. 282: 24–35. doi:10.1016/j.surfcoat.2015.10.011.
  8. ^ Lu, Ziheng; Chen, Chi; Baiyee, Zarah Medina; Chen, Xin; Niu, Chunming; Ciucci, Francesco (2015). "Defect chemistry and lithium transport in Li 3 OCl anti-perovskite superionic conductors". Phys. Chem. Chem. Phys. 17 (48): 32547–32555. Bibcode:2015PCCP...1732547L. doi:10.1039/c5cp05722a. PMID 26597695.
  9. ^ Tedstone, Aleksander A.; Lewis, David J.; O’Brien, Paul (2016-04-12). "Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides". Chemistry of Materials. 28 (7): 1965–1974. doi:10.1021/acs.chemmater.6b00430. ISSN 0897-4756.
  10. ^ Fei, Ruixiang; Kang, Wei; Yang, Li (2016-08-23). "Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides". Physical Review Letters. 117 (9): 097601. arXiv:1604.00724. Bibcode:2016PhRvL.117i7601F. doi:10.1103/PhysRevLett.117.097601. PMID 27610884. S2CID 118348096.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne