De Moivre's formula

In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real number x and integer n it is the case that where i is the imaginary unit (i2 = −1). The formula is named after Abraham de Moivre,[1] although he never stated it in his works.[2] The expression cos x + i sin x is sometimes abbreviated to cis x.

The formula is important because it connects complex numbers and trigonometry. By expanding the left hand side and then comparing the real and imaginary parts under the assumption that x is real, it is possible to derive useful expressions for cos nx and sin nx in terms of cos x and sin x.

As written, the formula is not valid for non-integer powers n. However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the nth roots of unity, that is, complex numbers z such that zn = 1.

Using the standard extensions of the sine and cosine functions to complex numbers, the formula is valid even when x is an arbitrary complex number.

  1. ^ Moivre, Ab. de (1707). "Aequationum quarundam potestatis tertiae, quintae, septimae, nonae, & superiorum, ad infinitum usque pergendo, in termimis finitis, ad instar regularum pro cubicis quae vocantur Cardani, resolutio analytica" [Of certain equations of the third, fifth, seventh, ninth, & higher power, all the way to infinity, by proceeding, in finite terms, in the form of rules for cubics which are called by Cardano, resolution by analysis.]. Philosophical Transactions of the Royal Society of London (in Latin). 25 (309): 2368–2371. doi:10.1098/rstl.1706.0037. S2CID 186209627.
    • English translation by Richard J. Pulskamp (2009)
    On p. 2370 de Moivre stated that if a series has the form , where n is any given odd integer (positive or negative) and where y and a can be functions, then upon solving for y, the result is equation (2) on the same page: . If y = cos x and a = cos nx , then the result is
    • In 1676, Isaac Newton found the relation between two chords that were in the ratio of n to 1; the relation was expressed by the series above. The series appears in a letter — Epistola prior D. Issaci Newton, Mathescos Professoris in Celeberrima Academia Cantabrigiensi; … — of 13 June 1676 from Isaac Newton to Henry Oldenburg, secretary of the Royal Society; a copy of the letter was sent to Gottfried Wilhelm Leibniz. See p. 106 of: Biot, J.-B.; Lefort, F., eds. (1856). Commercium epistolicum J. Collins et aliorum de analysi promota, etc: ou … (in Latin). Paris, France: Mallet-Bachelier. pp. 102–112.
    • In 1698, de Moivre derived the same series. See: de Moivre, A. (1698). "A method of extracting roots of an infinite equation". Philosophical Transactions of the Royal Society of London. 20 (240): 190–193. doi:10.1098/rstl.1698.0034. S2CID 186214144.; see p 192.
    • In 1730, de Moivre explicitly considered the case where the functions are cos θ and cos nθ. See: Moivre, A. de (1730). Miscellanea Analytica de Seriebus et Quadraturis (in Latin). London, England: J. Tonson & J. Watts. p. 1. From p. 1: "Lemma 1. Si sint l & x cosinus arcuum duorum A & B, quorum uterque eodem radio 1 describatur, quorumque prior sit posterioris multiplex in ea ratione quam habet numerus n ad unitatem, tunc erit ." (If l and x are cosines of two arcs A and B both of which are described by the same radius 1 and of which the former is a multiple of the latter in that ratio as the number n has to 1, then it will be [true that] .) So if arc A = n × arc B, then l = cos A = cos nB and x = cos B. Hence
    See also:
  2. ^ Lial, Margaret L.; Hornsby, John; Schneider, David I.; Callie J., Daniels (2008). College Algebra and Trigonometry (4th ed.). Boston: Pearson/Addison Wesley. p. 792. ISBN 9780321497444.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne