Dephosphorylation

In biochemistry, dephosphorylation is the removal of a phosphate (PO3−4) group from an organic compound by hydrolysis. It is a reversible post-translational modification. Dephosphorylation and its counterpart, phosphorylation, activate and deactivate enzymes by detaching or attaching phosphoric esters and anhydrides. A notable occurrence of dephosphorylation is the conversion of ATP to ADP and inorganic phosphate.

Dephosphorylation employs a type of hydrolytic enzyme, or hydrolase, which cleaves ester bonds. The prominent hydrolase subclass used in dephosphorylation is phosphatase, which removes phosphate groups by hydrolysing phosphoric acid monoesters into a phosphate ion and a molecule with a free hydroxyl (–OH) group.

The reversible phosphorylation-dephosphorylation reaction occurs in every physiological process, making proper function of protein phosphatases necessary for organism viability. Because protein dephosphorylation is a key process involved in cell signalling,[1] protein phosphatases are implicated in conditions such as cardiac disease, diabetes, and Alzheimer's disease.[2]

  1. ^ Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L (August 2017). "The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review)". International Journal of Molecular Medicine. 40 (2): 271–280. doi:10.3892/ijmm.2017.3036. PMC 5500920. PMID 28656226.
  2. ^ den Hertog J (November 2003). "Regulation of protein phosphatases in disease and behaviour". EMBO Reports. 4 (11): 1027–1032. doi:10.1038/sj.embor.7400009. PMC 1326379. PMID 14578923.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne