Donsker's theorem

Donsker's invariance principle for simple random walk on .

In probability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem for empirical distribution functions. Specifically, the theorem states that an appropriately centered and scaled version of the empirical distribution function converges to a Gaussian process.

Let be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let . The stochastic process is known as a random walk. Define the diffusively rescaled random walk (partial-sum process) by

The central limit theorem asserts that converges in distribution to a standard Gaussian random variable as . Donsker's invariance principle[1][2] extends this convergence to the whole function . More precisely, in its modern form, Donsker's invariance principle states that: As random variables taking values in the Skorokhod space , the random function converges in distribution to a standard Brownian motion as

Donsker-Skorokhod-Kolmogorov theorem for uniform distributions.
Donsker-Skorokhod-Kolmogorov theorem for normal distributions
  1. ^ Donsker, M.D. (1951). "An invariance principle for certain probability limit theorems". Memoirs of the American Mathematical Society (6). MR 0040613.
  2. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne