In probability theory and statistics, empirical likelihood (EL) is a nonparametric method for estimating the parameters of statistical models. It requires fewer assumptions about the error distribution while retaining some of the merits in likelihood-based inference. The estimation method requires that the data are independent and identically distributed (iid). It performs well even when the distribution is asymmetric or censored.[1] EL methods can also handle constraints and prior information on parameters. Art Owen pioneered work in this area with his 1988 paper.[2]
{{cite book}}
: CS1 maint: location missing publisher (link)