Endomorphism

Orthogonal projection onto a line, m, is a linear operator on the plane. This is an example of an endomorphism that is not an automorphism.

In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space V is a linear map f: VV, and an endomorphism of a group G is a group homomorphism f: GG. In general, we can talk about endomorphisms in any category. In the category of sets, endomorphisms are functions from a set S to itself.

In any category, the composition of any two endomorphisms of X is again an endomorphism of X. It follows that the set of all endomorphisms of X forms a monoid, the full transformation monoid, and denoted End(X) (or EndC(X) to emphasize the category C).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne