Flexible-fuel vehicle

The Ford Model T's engine was capable of running on ethanol, gasoline, kerosene, or a mixture of the first two.

A flexible-fuel vehicle (FFV) or dual-fuel vehicle (colloquially called a flex-fuel vehicle) is an alternative fuel vehicle with an internal combustion engine designed to run on more than one fuel, usually gasoline blended with either ethanol or methanol fuel, and both fuels are stored in the same common tank. Modern flex-fuel engines are capable of burning any proportion of the resulting blend in the combustion chamber as fuel injection and spark timing are adjusted automatically according to the actual blend detected by a fuel composition sensor. Flex-fuel vehicles are distinguished from bi-fuel vehicles, where two fuels are stored in separate tanks and the engine runs on one fuel at a time, for example, compressed natural gas (CNG), liquefied petroleum gas (LPG), or hydrogen.

The most common commercially available FFV in the world market is the ethanol flexible-fuel vehicle,[1] with about 60 million automobiles, motorcycles and light duty trucks manufactured and sold worldwide by March 2018, and concentrated in four markets, Brazil (30.5 million light-duty vehicles and over 6 million motorcycles),[2] the United States (27 million by the end of 2021),[3] Canada (1.6 million by 2014),[4] and Europe, led by Sweden (243,100).[5][6][7] In addition to flex-fuel vehicles running with ethanol, in Europe and the US, mainly in California, there have been successful test programs with methanol flex-fuel vehicles, known as M85 flex-fuel vehicles.[1][8] There have been also successful tests using P-series fuels with E85 flex fuel vehicles, but as of June 2008, this fuel is not yet available to the general public.[9][10] These successful tests with P-series fuels were conducted on Ford Taurus and Dodge Caravan flexible-fuel vehicles.[11]

Though technology exists to allow ethanol FFVs to run on any mixture of gasoline and ethanol, from pure gasoline up to 100% ethanol (E100),[12][13] North American and European flex-fuel vehicles are optimized to run on E85, a blend of 85% anhydrous ethanol fuel with 15% gasoline. This upper limit in the ethanol content is set to reduce ethanol emissions at low temperatures and to avoid cold starting problems during cold weather, at temperatures lower than 11 °C (52 °F).[14] The alcohol content is reduced during the winter in regions where temperatures fall below 0 °C (32 °F)[15] to a winter blend of E70 in the U.S.[16][17] or to E75 in Sweden[18] from November until March.[19] Brazilian flex fuel vehicles are optimized to run on any mix of E20-E25 gasoline and up to 100% hydrous ethanol fuel (E100). The Brazilian flex vehicles were built-in with a small gasoline reservoir for cold starting the engine when temperatures drop below 15 °C (59 °F).[20] An improved flex motor generation was launched in 2009 which eliminated the need for the secondary gas tank.[21][22][23][24]

  1. ^ a b Ryan, Lisa; Turton, Hal (2007). Sustainable Automobile Transport. Edward Elgar Publishing Ltd, England. pp. 40–41. ISBN 978-1-84720-451-6.
  2. ^ Cite error: The named reference BR30mFlex was invoked but never defined (see the help page).
  3. ^ Cite error: The named reference US20mFlex was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference FFVsCanada was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference BAFF was invoked but never defined (see the help page).
  6. ^ Cite error: The named reference SwedenSales2012 was invoked but never defined (see the help page).
  7. ^ Cite error: The named reference SwedenSales2014 was invoked but never defined (see the help page).
  8. ^ Cite error: The named reference Methanolstory was invoked but never defined (see the help page).
  9. ^ Christine Gable; Scott Gable. "P-series Fuel 101: What is it?". About.com:Hybrid Cars and Alt Fuels. Archived from the original on 24 February 2009. Retrieved 25 September 2008.
  10. ^ "Alternative Fuels: P-series". Energy Efficiency and Renewable Energy, USDoE. Retrieved 25 September 2008.
  11. ^ "Alternative Fuels: P-series fuels". Institute for the Analysis of Global Security. 2003. Retrieved 25 September 2008.
  12. ^ "Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)" (PDF). U.S. Department of Energy. June 2008. Retrieved 24 August 2008.
  13. ^ Cite error: The named reference SusEthanol was invoked but never defined (see the help page).
  14. ^ Davis, G.W.; et al. (6 August 2002). "Ethanol vehicle cold start improvement when using a hydrogen supplemented E85 fuel". Ethanol vehicle cold start improvement when using a hydrogensupplemented E85 fuel. Vol. 1. Energy Conversion Engineering Conference and Exhibit, 2000. (IECEC) 35th Intersociety. pp. 303–308. doi:10.1109/IECEC.2000.870702. ISBN 1-56347-375-5. S2CID 96955040.
  15. ^ Gregory W. Davis (11 June 2001). "Development of Technologies to Improve Cold Start Performance of Ethanol Vehicles: Final Report" (PDF). State of Michigan. Retrieved 14 October 2008.
  16. ^ Cite error: The named reference E70green was invoked but never defined (see the help page).
  17. ^ "Ethanol fuel and cars". Interesting Energy Facts. 23 September 2008. Retrieved 23 September 2008.
  18. ^ Vägverket (Swedish Road Administration) (30 May 2007). "Swedish comments on Euro 5/6 comitology version 4, 30 May 2007: Cold Temperature Tests For Flex Fuel Vehicles" (PDF). European Commission. Archived from the original (PDF) on 3 October 2008. Retrieved 23 September 2008.
  19. ^ "FAQs: Do ethanol cars really start when it is cold outside?". SEKAB. Archived from the original on 16 July 2011. Retrieved 14 October 2008.
  20. ^ Ron Kotrba (March 2008). "Cold Start 101". Ethanol Producer Magazine. Archived from the original on 24 October 2008. Retrieved 14 October 2008.
  21. ^ Cite error: The named reference BioEnergia was invoked but never defined (see the help page).
  22. ^ Cite error: The named reference Gazeta was invoked but never defined (see the help page).
  23. ^ Cite error: The named reference FlexStart1 was invoked but never defined (see the help page).
  24. ^ Cite error: The named reference FlexStart2 was invoked but never defined (see the help page).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne