Free module

In mathematics, a free module is a module that has a basis, that is, a generating set that is linearly independent. Every vector space is a free module,[1] but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules.

Given any set S and ring R, there is a free R-module with basis S, which is called the free module on S or module of formal R-linear combinations of the elements of S.

A free abelian group is precisely a free module over the ring of integers.

  1. ^ Keown (1975). An Introduction to Group Representation Theory. p. 24.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne