Genetic history of Sardinia

The genetic history of Sardinia consists of the study of the gene pool of the Sardinian people with two main objectives. The first is purely cultural and is to reconstruct the natural history of the population. The other instead has the aim of understanding the genetic causes of high life expectancy and of some pathologies by exploiting some peculiarities of the Sardinian population.[1][2]

A simplified model for recent demographic history of Europeans. The panels indicate a possible demographic scenario consistent with the observed signals. (A) Mesolithic HGs present in mainland Europe prior to the arrival of agriculture. (B) Initial spread of farming from the Middle East beginning from 7,000 YBP into SE Europe. (C) Expansion of farming to N Europe from SE European gene pool and establishment of main S-N gradient of genetic diversity. Wave of migration also reaches Sardinia. (D) Continuous population expansion and admixture with local HGs as well as additional migrations continues to shape genetic diversity in mainland Europe, but Sardinia remains mostly isolated (IBD: isolation by distance).[3] Subsequent studies based on ancient DNA from Sardinia have found that Sardinians are less isolated than previously thought[4][5]

The geographical position of Sardinia and the mountainousness of its territory have meant that particular anthropological and genetic characteristics have been created in the Sardinian population, due to phenomena such as isolation, endogamy and evolutionary processes such as genetic drift, in similarly to other European populations such as the Basques, Sámi and Icelanders.[6]

The high genetic variability implies a significant number of founding lines. Archeology indicates that the actual size of the Sardinian population was significant compared to other contemporary geographical areas (e.g. Corsica). Great demographic crises, such as those caused by plague epidemics, have not been able to affect the original structure of the population.

  1. ^ Genetics and epidemiology of aging-related traits and diseases in a population cohort:The ProgeNIA/SardiNIA Project, retrieved 10 January 2024
  2. ^ Genetic study in Sardinia shines new light on disease and immunity, 10 December 2020, retrieved 10 January 2024
  3. ^ Sikora, M.; Carpenter, M. L.; Moreno-Estrada, A.; Henn, B. M.; Underhill, P. A.; Sánchez-Quinto, F.; Zara, I.; Pitzalis, M.; Sidore, C.; Busonero, F.; Maschio, A.; Angius, A.; Jones, C.; Mendoza-Revilla, J.; Nekhrizov, G.; Dimitrova, D.; Theodossiev, N.; Harkins, T. T.; Keller, A.; Maixner, F.; Zink, A.; Abecasis, G.; Sanna, S.; Cucca, F.; Bustamante, C. D. (2014), "Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe", PLOS Genetics, 10 (5): e1004353, doi:10.1371/journal.pgen.1004353, PMC 4014435, PMID 24809476
  4. ^ Cite error: The named reference Marcus was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference Fernandes was invoked but never defined (see the help page).
  6. ^ Cavalli-Sforza, Luca; Menozzi, Paolo; Piazza, Alberto (1994). The History and Geography of Human Genes. Princeton University Press, pp. 272

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne