Group 3 element

Group 3 in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
IUPAC group number 3
Name by element scandium group
CAS group number
(US, pattern A-B-A)
IIIB
old IUPAC number
(Europe, pattern A-B)
IIIA

↓ Period
4
Image: Scandium crystals
Scandium (Sc)
21 Transition metal
5
Image: Yttrium crystals
Yttrium (Y)
39 Transition metal
6
Image: Lutetium crystals
Lutetium (Lu)
71 Lanthanide
7 Lawrencium (Lr)
103 Actinide

Legend

primordial element
synthetic element
Atomic number color:

Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. It contains the four elements scandium (Sc), yttrium (Y), lutetium (Lu), and lawrencium (Lr). The group is also called the scandium group or scandium family after its lightest member.

The chemistry of the group 3 elements is typical for early transition metals: they all essentially have only the group oxidation state of +3 as a major one, and like the preceding main-group metals are quite electropositive and have a less rich coordination chemistry. Due to the effects of the lanthanide contraction, yttrium and lutetium are very similar in properties. Yttrium and lutetium have essentially the chemistry of the heavy lanthanides, but scandium shows several differences due to its small size. This is a similar pattern to those of the early transition metal groups, where the lightest element is distinct from the very similar next two.

All the group 3 elements are rather soft, silvery-white metals, although their hardness increases with atomic number. They quickly tarnish in air and react with water, though their reactivity is masked by the formation of an oxide layer. The first three of them occur naturally, and especially yttrium and lutetium are almost invariably associated with the lanthanides due to their similar chemistry. Lawrencium is strongly radioactive: it does not occur naturally and must be produced by artificial synthesis, but its observed and theoretically predicted properties are consistent with it being a heavier homologue of lutetium. None of the group 3 elements have any biological role.

Historically, sometimes lanthanum (La) and actinium (Ac) were included in the group instead of lutetium and lawrencium, because the electron configurations of many of the rare earths were initially measured wrongly. This version of group 3 is still commonly found in textbooks, but most authors focusing on the subject are against it. Some authors attempt to compromise between the two formats by leaving the spaces below yttrium blank, but this contradicts quantum mechanics as it results in an f-block that is 15 elements wide rather than 14 (the maximum occupancy of an f-subshell).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne