1 n K ( N − K ) ( N − n ) ( N − 2 ) ( N − 3 ) ⋅ {\displaystyle \left.{\frac {1}{nK(N-K)(N-n)(N-2)(N-3)}}\cdot \right.} [ ( N − 1 ) N 2 ( N ( N + 1 ) − 6 K ( N − K ) − 6 n ( N − n ) ) {\displaystyle {\big [}(N-1)N^{2}{\big (}N(N+1)-6K(N-K)-6n(N-n){\big )}}
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of k {\displaystyle k} successes (random draws for which the object drawn has a specified feature) in n {\displaystyle n} draws, without replacement, from a finite population of size N {\displaystyle N} that contains exactly K {\displaystyle K} objects with that feature, wherein each draw is either a success or a failure. In contrast, the binomial distribution describes the probability of k {\displaystyle k} successes in n {\displaystyle n} draws with replacement.
Developed by Nelliwinne