Image algorithm
The Inception Score (IS) is an algorithm used to assess the quality of images created by a generative image model such as a generative adversarial network (GAN).[1] The score is calculated based on the output of a separate, pretrained Inception v3 image classification model applied to a sample of (typically around 30,000) images generated by the generative model. The Inception Score is maximized when the following conditions are true:
- The entropy of the distribution of labels predicted by the Inceptionv3 model for the generated images is minimized. In other words, the classification model confidently predicts a single label for each image. Intuitively, this corresponds to the desideratum of generated images being "sharp" or "distinct".
- The predictions of the classification model are evenly distributed across all possible labels. This corresponds to the desideratum that the output of the generative model is "diverse".[2]
It has been somewhat superseded by the related Fréchet inception distance.[3] While the Inception Score only evaluates the distribution of generated images, the FID compares the distribution of generated images with the distribution of a set of real images ("ground truth").
- ^ Cite error: The named reference
Salimans
was invoked but never defined (see the help page).
- ^ Cite error: The named reference
Frolov
was invoked but never defined (see the help page).
- ^ Cite error: The named reference
Borji
was invoked but never defined (see the help page).