Incidence structure

Examples of incidence structures:
Example 1: points and lines of the Euclidean plane (top)
Example 2: points and circles (middle),
Example 3: finite incidence structure defined by an incidence matrix (bottom)

In mathematics, an incidence structure is an abstract system consisting of two types of objects and a single relationship between these types of objects. Consider the points and lines of the Euclidean plane as the two types of objects and ignore all the properties of this geometry except for the relation of which points are incident on which lines for all points and lines. What is left is the incidence structure of the Euclidean plane.

Incidence structures are most often considered in the geometrical context where they are abstracted from, and hence generalize, planes (such as affine, projective, and Möbius planes), but the concept is very broad and not limited to geometric settings. Even in a geometric setting, incidence structures are not limited to just points and lines; higher-dimensional objects (planes, solids, n-spaces, conics, etc.) can be used. The study of finite structures is sometimes called finite geometry.[1]


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne