The iterative proportional fitting procedure (IPF or IPFP, also known as biproportional fitting or biproportion in statistics or economics (input-output analysis, etc.), RAS algorithm[1] in economics, raking in survey statistics, and matrix scaling in computer science) is the operation of finding the fitted matrix which is the closest to an initial matrix but with the row and column totals of a target matrix (which provides the constraints of the problem; the interior of is unknown). The fitted matrix being of the form , where and are diagonal matrices such that has the margins (row and column sums) of . Some algorithms can be chosen to perform biproportion. We have also the entropy maximization,[2][3] information loss minimization (or cross-entropy)[4] or RAS which consists of factoring the matrix rows to match the specified row totals, then factoring its columns to match the specified column totals; each step usually disturbs the previous step's match, so these steps are repeated in cycles, re-adjusting the rows and columns in turn, until all specified marginal totals are satisfactorily approximated. However, all algorithms give the same solution.[5] In three- or more-dimensional cases, adjustment steps are applied for the marginals of each dimension in turn, the steps likewise repeated in cycles.