Names | Next Generation Space Telescope (NGST; 1996–2002) |
---|---|
Mission type | Astronomy |
Operator | STScI (NASA)[1] / ESA / CSA |
COSPAR ID | 2021-130A |
SATCAT no. | 50463 |
Website | jwst webbtelescope |
Mission duration | |
Spacecraft properties | |
Manufacturer | |
Launch mass | 6,500 kg (14,300 lb)[4] |
Dimensions | 21.197 m × 14.162 m (69.54 ft × 46.46 ft),[5] sunshield |
Power | 2 kW |
Start of mission | |
Launch date | 25 December 2021UTC[4] | , 12:20
Rocket | Ariane 5 ECA+ (S/N 5113, Flight VA256) |
Launch site | Guiana, ELA-3 |
Contractor | Arianespace |
Entered service | 12 July 2022 |
Orbital parameters | |
Reference system | Sun–Earth L2 orbit |
Regime | Halo orbit |
Periapsis altitude | 250,000 km (160,000 mi)[6] |
Apoapsis altitude | 832,000 km (517,000 mi)[6] |
Period | 6 months |
Main telescope | |
Type | Korsch telescope |
Diameter | 6.5 m (21 ft) |
Focal length | 131.4 m (431 ft) |
Focal ratio | f/20.2 |
Collecting area | 25.4 m2 (273 sq ft)[7] |
Wavelengths | 0.6–28.5 μm (orange to mid-infrared) |
Transponders | |
Band |
|
Bandwidth |
|
Instruments | |
Elements | |
| |
James Webb Space Telescope mission logo Large Strategic Science Missions Astrophysics Division |
The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. As the largest telescope in space, it is equipped with high-resolution and high-sensitivity instruments, allowing it to view objects too old, distant, or faint for the Hubble Space Telescope.[9] This enables investigations across many fields of astronomy and cosmology, such as observation of the first stars and the formation of the first galaxies, and detailed atmospheric characterization of potentially habitable exoplanets.[10][11][12]
Although the Webb's mirror diameter is 2.7 times larger than that of the Hubble Space Telescope, it produces images of comparable sharpness because it observes in the longer-wavelength infrared spectrum. The longer the wavelength of the spectrum, the larger the information-gathering surface required (mirrors in the infrared spectrum or antenna area in the millimeter and radio ranges) for an image comparable in clarity to the visible spectrum of the Hubble Space Telescope.
The Webb was launched on 25 December 2021 on an Ariane 5 rocket from Kourou, French Guiana. In January 2022 it arrived at its destination, a solar orbit near the Sun–Earth L2 Lagrange point, about 1.5 million kilometers (930,000 mi) from Earth. The telescope's first image was released to the public on 11 July 2022.[13]
The U.S. National Aeronautics and Space Administration (NASA) led Webb's design and development and partnered with two main agencies: the European Space Agency (ESA) and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center in Maryland managed telescope development, while the Space Telescope Science Institute in Baltimore on the Homewood Campus of Johns Hopkins University operates Webb. The primary contractor for the project was Northrop Grumman.
The telescope is named after James E. Webb, who was the administrator of NASA from 1961 to 1968 during the Mercury, Gemini, and Apollo programs.
Webb's primary mirror consists of 18 hexagonal mirror segments made of gold-plated beryllium, which together create a 6.5-meter-diameter (21 ft) mirror, compared with Hubble's 2.4 m (7 ft 10 in). This gives Webb a light-collecting area of about 25 m2 (270 sq ft), about six times that of Hubble. Unlike Hubble, which observes in the near ultraviolet and visible (0.1 to 0.8 μm), and near infrared (0.8–2.5 μm)[14] spectra, Webb observes a lower frequency range, from long-wavelength visible light (red) through mid-infrared (0.6–28.5 μm).[15] The telescope must be kept extremely cold, below 50 K (−223 °C; −370 °F), so that the infrared light emitted by the telescope itself does not interfere with the collected light. Its five-layer sunshield protects it from warming by the Sun, Earth, and Moon.
Initial designs for the telescope, then named the Next Generation Space Telescope, began in 1996. Two concept studies were commissioned in 1999, for a potential launch in 2007 and a US$1 billion budget. The program was plagued with enormous cost overruns and delays. A major redesign was accomplished in 2005, with construction completed in 2016, followed by years of exhaustive testing, at a total cost of US$10 billion.
NYT-20220823
was invoked but never defined (see the help page).WP-20220805
was invoked but never defined (see the help page).CWHT
was invoked but never defined (see the help page).