John William Strutt, 3rd Baron Rayleigh

The Lord Rayleigh
Rayleigh in 1904
Chancellor of the University of Cambridge
In office
1908–1919
Preceded bySpencer Cavendish, 8th Duke of Devonshire
Succeeded byArthur Balfour, 1st Earl of Balfour
39th President of the Royal Society
In office
1905–1908
Preceded bySir William Huggins
Succeeded bySir Archibald Geikie
Personal details
Born
John William Strutt

(1842-11-12)12 November 1842
Maldon, Essex, England
Died30 June 1919(1919-06-30) (aged 76)
Terling Place, Witham, Essex, England
Alma mater
Known for
Spouse
Evelyn Balfour
(m. 1871)
Children3, including Robert
Awards
Scientific career
FieldsPhysics
Mathematics
Institutions
Academic advisors
Notable students
2nd Cavendish Professor of Physics
In office
1879–1884
Preceded byJames Clerk Maxwell
Succeeded byJ. J. Thomson
Signature

John William Strutt, 3rd Baron Rayleigh (/ˈrli/; 12 November 1842 – 30 June 1919), was an English physicist and mathematician. He spent all of his academic career at the University of Cambridge. Among many honours, he received the Nobel Prize in Physics in 1904 "for his investigations of the densities of the most important gases and for his discovery of argon in connection with these studies". He served as president of the Royal Society from 1905 to 1908 and as chancellor of the University of Cambridge from 1908 to 1919.

Rayleigh provided the first theoretical treatment of the elastic scattering of light by particles much smaller than the light's wavelength, a phenomenon now known as "Rayleigh scattering", which notably explains why the sky is blue. He studied and described transverse surface waves in solids, now known as "Rayleigh waves". He contributed extensively to fluid dynamics, with concepts such as the Rayleigh number (a dimensionless number associated with natural convection), Rayleigh flow, the Rayleigh–Taylor instability, and Rayleigh's criterion for the stability of Taylor–Couette flow. He also formulated the circulation theory of aerodynamic lift. In optics, Rayleigh proposed a well-known criterion for angular resolution. His derivation of the Rayleigh–Jeans law for classical black-body radiation later played an important role in the birth of quantum mechanics (see ultraviolet catastrophe). Rayleigh's textbook The Theory of Sound (1877) is still used today by acousticians and engineers. He introduced the Rayleigh test for circular non-uniformity, of which the Rayleigh plot visualizes.

  1. ^ Ranford, Paul (September 2019). John William Strutt-- the 3rd Baron Rayleigh (1842–1919): Recently studied correspondence. p. 25.
  2. ^ "John Strutt (Lord Rayleigh) – The Mathematics Genealogy Project". www.genealogy.math.ndsu.nodak.edu.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne