Kronecker product

In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix. It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis. The Kronecker product is to be distinguished from the usual matrix multiplication, which is an entirely different operation. The Kronecker product is also sometimes called matrix direct product.[1]

The Kronecker product is named after the German mathematician Leopold Kronecker (1823–1891), even though there is little evidence that he was the first to define and use it. The Kronecker product has also been called the Zehfuss matrix, and the Zehfuss product, after Johann Georg Zehfuss [de], who in 1858 described this matrix operation, but Kronecker product is currently the most widely used term.[2][3] The misattribution to Kronecker rather than Zehfuss was due to Kurt Hensel.[4]

  1. ^ Weisstein, Eric W. "Kronecker product". mathworld.wolfram.com. Retrieved 2020-09-06.
  2. ^ Zehfuss, G. (1858). "Ueber eine gewisse Determinante". Zeitschrift für Mathematik und Physik. 3: 298–301.
  3. ^ Henderson, Harold V.; Pukelsheim, Friedrich; Searle, Shayle R. (1983). "On the history of the kronecker product". Linear and Multilinear Algebra. 14 (2): 113–120. doi:10.1080/03081088308817548. hdl:1813/32834. ISSN 0308-1087.
  4. ^ Sayed, Ali H. (2022-12-22). Inference and Learning from Data: Foundations. Cambridge University Press. ISBN 978-1-009-21812-2.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne