Language model

A language model is a probabilistic model of a natural language.[1] In 1980, the first significant statistical language model was proposed, and during the decade IBM performed ‘Shannon-style’ experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.[2]

Language models are useful for a variety of tasks, including speech recognition[3] (helping prevent predictions of low-probability (e.g. nonsense) sequences), machine translation,[4] natural language generation (generating more human-like text), optical character recognition, route optimization,[5] handwriting recognition,[6] grammar induction,[7] and information retrieval.[8][9]

Large language models, currently their most advanced form, are a combination of larger datasets (frequently using words scraped from the public internet), feedforward neural networks, and transformers. They have superseded recurrent neural network-based models, which had previously superseded the pure statistical models, such as word n-gram language model.

  1. ^ Jurafsky, Dan; Martin, James H. (2021). "N-gram Language Models". Speech and Language Processing (3rd ed.). Archived from the original on 22 May 2022. Retrieved 24 May 2022.
  2. ^ Rosenfeld, Ronald (2000). "Two decades of statistical language modeling: Where do we go from here?". Proceedings of the IEEE. 88 (8): 1270–1278. doi:10.1109/5.880083. S2CID 10959945.
  3. ^ Kuhn, Roland, and Renato De Mori (1990). "A cache-based natural language model for speech recognition". IEEE transactions on pattern analysis and machine intelligence 12.6: 570–583.
  4. ^ Andreas, Jacob, Andreas Vlachos, and Stephen Clark (2013). "Semantic parsing as machine translation" Archived 15 August 2020 at the Wayback Machine. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
  5. ^ Liu, Yang; Wu, Fanyou; Liu, Zhiyuan; Wang, Kai; Wang, Feiyue; Qu, Xiaobo (2023). "Can language models be used for real-world urban-delivery route optimization?". The Innovation. 4 (6): 100520. Bibcode:2023Innov...400520L. doi:10.1016/j.xinn.2023.100520. PMC 10587631. PMID 37869471.
  6. ^ Pham, Vu, et al (2014). "Dropout improves recurrent neural networks for handwriting recognition" Archived 11 November 2020 at the Wayback Machine. 14th International Conference on Frontiers in Handwriting Recognition. IEEE.
  7. ^ Htut, Phu Mon, Kyunghyun Cho, and Samuel R. Bowman (2018). "Grammar induction with neural language models: An unusual replication" Archived 14 August 2022 at the Wayback Machine. arXiv:1808.10000.
  8. ^ Ponte, Jay M.; Croft, W. Bruce (1998). A language modeling approach to information retrieval. Proceedings of the 21st ACM SIGIR Conference. Melbourne, Australia: ACM. pp. 275–281. doi:10.1145/290941.291008.
  9. ^ Hiemstra, Djoerd (1998). A linguistically motivated probabilistically model of information retrieval. Proceedings of the 2nd European conference on Research and Advanced Technology for Digital Libraries. LNCS, Springer. pp. 569–584. doi:10.1007/3-540-49653-X_34.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne