Machine learning in physics

Applying machine learning (ML) (including deep learning) methods to the study of quantum systems is an emergent area of physics research. A basic example of this is quantum state tomography, where a quantum state is learned from measurement.[1] Other examples include learning Hamiltonians,[2][3] learning quantum phase transitions,[4][5] and automatically generating new quantum experiments.[6][7][8][9] ML is effective at processing large amounts of experimental or calculated data in order to characterize an unknown quantum system, making its application useful in contexts including quantum information theory, quantum technology development, and computational materials design. In this context, for example, it can be used as a tool to interpolate pre-calculated interatomic potentials,[10] or directly solving the Schrödinger equation with a variational method.[11]

  1. ^ Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe (May 2018). "Neural-network quantum state tomography". Nature Physics. 14 (5): 447–450. arXiv:1703.05334. Bibcode:2018NatPh..14..447T. doi:10.1038/s41567-018-0048-5. ISSN 1745-2481. S2CID 125415859.
  2. ^ Cory, D. G.; Wiebe, Nathan; Ferrie, Christopher; Granade, Christopher E. (2012-07-06). "Robust Online Hamiltonian Learning". New Journal of Physics. 14 (10): 103013. arXiv:1207.1655. Bibcode:2012NJPh...14j3013G. doi:10.1088/1367-2630/14/10/103013. S2CID 9928389.
  3. ^ Cao, Chenfeng; Hou, Shi-Yao; Cao, Ningping; Zeng, Bei (2020-02-10). "Supervised learning in Hamiltonian reconstruction from local measurements on eigenstates". Journal of Physics: Condensed Matter. 33 (6): 064002. arXiv:2007.05962. doi:10.1088/1361-648x/abc4cf. ISSN 0953-8984. PMID 33105109. S2CID 220496757.
  4. ^ Broecker, Peter; Assaad, Fakher F.; Trebst, Simon (2017-07-03). "Quantum phase recognition via unsupervised machine learning". arXiv:1707.00663 [cond-mat.str-el].
  5. ^ Huembeli, Patrick; Dauphin, Alexandre; Wittek, Peter (2018). "Identifying Quantum Phase Transitions with Adversarial Neural Networks". Physical Review B. 97 (13): 134109. arXiv:1710.08382. Bibcode:2018PhRvB..97m4109H. doi:10.1103/PhysRevB.97.134109. ISSN 2469-9950. S2CID 125593239.
  6. ^ Krenn, Mario (2016-01-01). "Automated Search for new Quantum Experiments". Physical Review Letters. 116 (9): 090405. arXiv:1509.02749. Bibcode:2016PhRvL.116i0405K. doi:10.1103/PhysRevLett.116.090405. PMID 26991161. S2CID 20182586.
  7. ^ Knott, Paul (2016-03-22). "A search algorithm for quantum state engineering and metrology". New Journal of Physics. 18 (7): 073033. arXiv:1511.05327. Bibcode:2016NJPh...18g3033K. doi:10.1088/1367-2630/18/7/073033. S2CID 2721958.
  8. ^ Dunjko, Vedran; Briegel, Hans J (2018-06-19). "Machine learning & artificial intelligence in the quantum domain: a review of recent progress". Reports on Progress in Physics. 81 (7): 074001. arXiv:1709.02779. Bibcode:2018RPPh...81g4001D. doi:10.1088/1361-6633/aab406. hdl:1887/71084. ISSN 0034-4885. PMID 29504942. S2CID 3681629.
  9. ^ Melnikov, Alexey A.; Nautrup, Hendrik Poulsen; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J. (1221). "Active learning machine learns to create new quantum experiments". Proceedings of the National Academy of Sciences. 115 (6): 1221–1226. arXiv:1706.00868. doi:10.1073/pnas.1714936115. ISSN 0027-8424. PMC 5819408. PMID 29348200.
  10. ^ Behler, Jörg; Parrinello, Michele (2007-04-02). "Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces". Physical Review Letters. 98 (14): 146401. Bibcode:2007PhRvL..98n6401B. doi:10.1103/PhysRevLett.98.146401. PMID 17501293.
  11. ^ Cite error: The named reference :5 was invoked but never defined (see the help page).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne