Molecular mechanics

A force field is used to minimize the bond stretching energy of this ethane molecule.

Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular mechanics can be used to study molecule systems ranging in size and complexity from small to large biological systems or material assemblies with many thousands to millions of atoms.

All-atomistic molecular mechanics methods have the following properties:

  • Each atom is simulated as one particle
  • Each particle is assigned a radius (typically the van der Waals radius), polarizability, and a constant net charge (generally derived from quantum calculations and/or experiment)
  • Bonded interactions are treated as springs with an equilibrium distance equal to the experimental or calculated bond length

Variants on this theme are possible. For example, many simulations have historically used a united-atom representation in which each terminal methyl group or intermediate methylene unit was considered one particle, and large protein systems are commonly simulated using a bead model that assigns two to four particles per amino acid.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne