Nanoionics

Nanoionics[1] is the study and application of phenomena, properties, effects, methods and mechanisms of processes connected with fast ion transport (FIT) in all-solid-state nanoscale systems. The topics of interest include fundamental properties of oxide ceramics at nanometer length scales, and fast-ion conductor (advanced superionic conductor)/electronic conductor heterostructures.[2] Potential applications are in electrochemical devices (electrical double layer devices) for conversion and storage of energy, charge and information. The term and conception of nanoionics (as a new branch of science) were first introduced by A.L. Despotuli and V.I. Nikolaichik (Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka) in January 1992.[1]

A multidisciplinary scientific and industrial field of solid state ionics, dealing with ionic transport phenomena in solids, considers Nanoionics as its new division.[3] Nanoionics tries to describe, for example, diffusion&reactions, in terms that make sense only at a nanoscale, e.g., in terms of non-uniform (at a nanoscale) potential landscape.

There are two classes of solid-state ionic nanosystems and two fundamentally different nanoionics: (I) nanosystems based on solids with low ionic conductivity, and (II) nanosystems based on advanced superionic conductors (e.g. alpha–AgI, rubidium silver iodide–family).[4] Nanoionics-I and nanoionics-II differ from each other in the design of interfaces. The role of boundaries in nanoionics-I is the creation of conditions for high concentrations of charged defects (vacancies and interstitials) in a disordered space-charge layer. But in nanoionics-II, it is necessary to conserve the original highly ionic conductive crystal structures of advanced superionic conductors at ordered (lattice-matched) heteroboundaries. Nanoionic-I can significantly enhance (up to ~108 times) the 2D-like ion conductivity in nanostructured materials with structural coherence,[5] but it is remaining ~103 times smaller relatively to 3D ionic conductivity of advanced superionic conductors.

The classical theory of diffusion and migration in solids is based on the notion of a diffusion coefficient, activation energy[6] and electrochemical potential.[7] This means that accepted is the picture of a hopping ion transport in the potential landscape where all barriers are of the same height (uniform potential relief). Despite the obvious difference of objects of solid state ionics and nanoionics-I, -II, the true new problem of fast-ion transport and charge/energy storage (or transformation) for these objects (fast-ion conductors) has a special common basis: non-uniform potential landscape on nanoscale[8] (for example) which determines the character of the mobile ion subsystem response to an impulse or harmonic external influence, e.g. a weak influence in Dielectric spectroscopy (impedance spectroscopy).[9]

  1. ^ a b Despotuli, A.L.; Nikolaichic V.I. (1993). "A step towards nanoionics". Solid State Ionics. 60 (4): 275–278. doi:10.1016/0167-2738(93)90005-N.
  2. ^ Yamaguchi, S. (2007). "Nanoionics - Present and future prospects". Science and Technology of Advanced Materials. 8 (6): 503 (free download). Bibcode:2007STAdM...8..503Y. doi:10.1016/j.stam.2007.10.002.
  3. ^ C S Sunandana (2015). Introduction to Solid State Ionics: Phenomenology and Applications (First ed.). CRC Press. p. 529. ISBN 9781482229707.
  4. ^ Despotuli, A.L.; Andreeva, A.V.; Rambabu, B. (2005). "Nanoionics of advanced superionic conductors". Ionics. 11 (3–4): 306–314. doi:10.1007/BF02430394. S2CID 53352333.
  5. ^ Garcia-Barriocanal, J.; Rivera-Calzada, A.; Varela, M.; Sefrioui, Z.; Iborra, E.; Leon, C.; Pennycook, S. J.; Santamaria, J. (2008). "Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures". Science. 321 (5889): 676–680. Bibcode:2008Sci...321..676G. doi:10.1126/science.1156393. PMID 18669859. S2CID 32000781.
  6. ^ H Mehrer (2007). Diffusion in solids (First ed.). Springer-Verlag Berlin Heidelberg. p. 651. ISBN 978-3-540-71488-0.
  7. ^ A D McNaught (1997). IUPAC. Compendium of Chemical Terminology (the Gold Book) (2nd ed.). Blackwell Scientific Publications. p. 1622. ISBN 978-0-9678550-9-7.
  8. ^ Bindi, L.; Evain M. (2006). "Fast ion conduction character and ionic phase-transitions in disordered crystals: the complex case of the minerals of the pearceite– polybasite group". Phys Chem Miner. 33 (10): 677–690. Bibcode:2006PCM....33..677B. doi:10.1007/s00269-006-0117-7. S2CID 95315848.
  9. ^ Despotuli, A.; Andreeva A. (2015). "Maxwell displacement current and nature of Jonsher's "universal" dynamic response in nanoionics". Ionics. 21 (2): 459–469. arXiv:1403.4818. doi:10.1007/s11581-014-1183-3. S2CID 95593078.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne