Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state. This process can occur in response to learning new skills, experiencing environmental changes, recovering from injuries, or adapting to sensory or cognitive deficits. Such adaptability highlights the dynamic and ever-evolving nature of the brain, even into adulthood.[1] These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping or neural oscillation. Other forms of neuroplasticity include homologous area adaptation, cross modal reassignment, map expansion, and compensatory masquerade.[2] Examples of neuroplasticity include circuit and network changes that result from learning a new ability, information acquisition,[3] environmental influences,[4] pregnancy,[5] caloric intake,[6] practice/training,[7] and psychological stress.[8]
Neuroplasticity was once thought by neuroscientists to manifest only during childhood,[9][10] but research in the latter half of the 20th century showed that many aspects of the brain can be altered (or are "plastic") even through adulthood.[11] Furthermore, starting from the primary stimulus-response sequence in simple reflexes, the organisms' capacity to correctly detect alterations within themselves and their context depends on the concrete nervous system architecture, which evolves in a particular way already during gestation.[12][13][14] Adequate nervous system development forms us as human beings with all necessary cognitive functions. The physicochemical properties of the mother-fetus bio-system affect the neuroplasticity of the embryonic nervous system in their ecological context.[12][13][14] However, the developing brain exhibits a higher degree of plasticity than the adult brain.[15]Activity-dependent plasticity can have significant implications for healthy development, learning, memory, and recovery from brain damage.[16][17][18]
^Cite error: The named reference livingston was invoked but never defined (see the help page).
^ abVal Danilov I (2023). "Shared Intentionality Before Birth: Emulating a Model of Mother-Fetus Communication for Developing Human-Machine Systems." In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_5
^ ab Val Danilov I (2024). "The Origin of Natural Neurostimulation: A Narrative Review of Noninvasive Brain Stimulation Techniques." OBM Neurobiology 2024; 8(4): 260; https://doi:10.21926/obm.neurobiol.2404260.
^ abVal Danilov I (2024). "Child Cognitive Development with the Maternal Heartbeat: A Mother-Fetus Neurocognitive Model and Architecture for Bioengineering Systems." In International Conference on Digital Age & Technological Advances for Sustainable Development (pp. 216-223). Springer, Cham. https://doi.org/10.1007/978-3-031-75329-9_24