Nihonium

Nihonium, 113Nh
Nihonium
Pronunciation/nɪˈhniəm/ (nih-HOH-nee-əm)
Mass number[286]
Nihonium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Tl

Nh

coperniciumnihoniumflerovium
Atomic number (Z)113
Groupgroup 13 (boron group)
Periodperiod 7
Block  p-block
Electron configuration[Rn] 5f14 6d10 7s2 7p1 (predicted)[1]
Electrons per shell2, 8, 18, 32, 32, 18, 3 (predicted)
Physical properties
Phase at STPsolid (predicted)[1][2][3]
Melting point700 K ​(430 °C, ​810 °F) (predicted)[1]
Boiling point1430 K ​(1130 °C, ​2070 °F) (predicted)[1][4]
Density (near r.t.)16 g/cm3 (predicted)[4]
Heat of fusion7.61 kJ/mol (extrapolated)[3]
Heat of vaporisation130 kJ/mol (predicted)[2][4]
Atomic properties
Oxidation statescommon: (none)
Ionisation energies
  • 1st: 704.9 kJ/mol (predicted)[1]
  • 2nd: 2240 kJ/mol (predicted)[4]
  • 3rd: 3020 kJ/mol (predicted)[4]
  • (more)
Atomic radiusempirical: 170 pm (predicted)[1]
Covalent radius172–180 pm (extrapolated)[3]
Other properties
Natural occurrencesynthetic
Crystal structurehexagonal close-packed (hcp)
Hexagonal close-packed crystal structure for nihonium

(predicted)[5][6]
CAS Number54084-70-7
History
NamingAfter Japan (Nihon in Japanese)
DiscoveryRiken (Japan, first undisputed claim 2004)
JINR (Russia) and Livermore (US, first announcement 2003)
Isotopes of nihonium
Main isotopes[7] Decay
abun­dance half-life (t1/2) mode pro­duct
278Nh synth 2.0 ms α 274Rg
282Nh synth 61 ms α 278Rg
283Nh synth 123 ms α 279Rg
284Nh synth 0.90 s α 280Rg
ε 284Cn
285Nh synth 2.1 s α 281Rg
SF
286Nh synth 9.5 s α 282Rg
287Nh synth 5.5 s?[8] α 283Rg
290Nh synth 2 s?[9] α 286Rg
 Category: Nihonium
| references

Nihonium is a synthetic chemical element; it has the symbol Nh and atomic number 113. It is extremely radioactive: its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide element in the p-block. It is a member of period 7 and group 13.

Nihonium was first reported to have been created in experiments carried out between 14 July and 10 August 2003, by a Russian–American collaboration at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, working in collaboration with the Lawrence Livermore National Laboratory in Livermore, California, and on 23 July 2004, by a team of Japanese scientists at Riken in Wakō, Japan. The confirmation of their claims in the ensuing years involved independent teams of scientists working in the United States, Germany, Sweden, and China, as well as the original claimants in Russia and Japan. In 2015, the IUPAC/IUPAP Joint Working Party recognised the element and assigned the priority of the discovery and naming rights for the element to Riken. The Riken team suggested the name nihonium in 2016, which was approved in the same year. The name comes from the common Japanese name for Japan (日本, nihon).

Very little is known about nihonium, as it has been made only in very small amounts that decay within seconds. The anomalously long lives of some superheavy nuclides, including some nihonium isotopes, are explained by the island of stability theory. Experiments to date have supported the theory, with the half-lives of the confirmed nihonium isotopes increasing from milliseconds to seconds as neutrons are added and the island is approached. Nihonium has been calculated to have similar properties to its homologues boron, aluminium, gallium, indium, and thallium. All but boron are post-transition metals, and nihonium is expected to be a post-transition metal as well. It should also show several major differences from them; for example, nihonium should be more stable in the +1 oxidation state than the +3 state, like thallium, but in the +1 state nihonium should behave more like silver and astatine than thallium. Preliminary experiments have shown that elemental nihonium is not very volatile, and that it is less reactive than its lighter homologue thallium.

  1. ^ a b c d e f Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  2. ^ a b Seaborg, Glenn T. (c. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. Retrieved 16 March 2010.
  3. ^ a b c Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. 85 (9): 1177–1186. doi:10.1021/j150609a021.
  4. ^ a b c d e Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  5. ^ Keller, O. L. Jr.; Burnett, J. L.; Carlson, T. A.; Nestor, C. W. Jr. (1969). "Predicted Properties of the Super Heavy Elements. I. Elements 113 and 114, Eka-Thallium and Eka-Lead". The Journal of Physical Chemistry. 74 (5): 1127−1134. doi:10.1021/j100700a029.
  6. ^ Atarah, Samuel A.; Egblewogbe, Martin N. H.; Hagoss, Gebreyesus G. (2020). "First principle study of the structural and electronic properties of Nihonium". MRS Advances: 1–9. doi:10.1557/adv.2020.159.
  7. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  8. ^ Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. ISBN 9789813226555.
  9. ^ Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). doi:10.1140/epja/i2016-16180-4.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne