Norm (mathematics)

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin.[1] A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space.

The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm".[1] It can also refer to a norm that can take infinite values,[2] or to certain functions parametrised by a directed set.[3]

  1. ^ a b Knapp, A.W. (2005). Basic Real Analysis. Birkhäuser. p. [1]. ISBN 978-0-817-63250-2.
  2. ^ "Pseudonorm". www.spektrum.de (in German). Retrieved 2022-05-12.
  3. ^ Hyers, D. H. (1939-09-01). "Pseudo-normed linear spaces and Abelian groups". Duke Mathematical Journal. 5 (3). doi:10.1215/s0012-7094-39-00551-x. ISSN 0012-7094.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne