Process by which nuclear WMDs are designed and produced
Nuclear weapons design are physical, chemical, and engineering arrangements that cause the physics package[1] of a nuclear weapon to detonate. There are three existing basic design types:
Pure fission weapons are the simplest, least technically demanding, were the first nuclear weapons built, and so far the only type ever used in warfare, by the United States on Japan in World War II.
Boosted fission weapons increase yield beyond that of the implosion design, by using small quantities of fusion fuel to enhance the fission chain reaction. Boosting can more than double the weapon's fission energy yield.
Staged thermonuclear weapons are arrangements of two or more "stages", most usually two. The first stage is typically a boosted fission weapon (except for the earliest thermonuclear weapons, which used a pure fission weapon). Its detonation causes it to shine intensely with X-rays, which illuminate and implode the second stage filled with fusion fuel. This initiates a sequence of events which results in a thermonuclear, or fusion, burn. This process affords potential yields up to hundreds of times those of fission weapons.[2]
Pure fission weapons have been the first type to be built by new nuclear powers. Large industrial states with well-developed nuclear arsenals have two-stage thermonuclear weapons, which are the most compact, scalable, and cost effective option, once the necessary technical base and industrial infrastructure are built.
Most known innovations in nuclear weapon design originated in the United States, though some were later developed independently by other states.[3]
In early news accounts, pure fission weapons were called atomic bombs or A-bombs and weapons involving fusion were called hydrogen bombs or H-bombs. Practitioners of nuclear policy, however, favor the terms nuclear and thermonuclear, respectively.
^The physics package is the nuclear explosive module inside the bomb casing, missile warhead, or artillery shell, etc., which delivers the weapon to its target. While photographs of weapon casings are common, photographs of the physics package are quite rare, even for the oldest and crudest nuclear weapons. For a photograph of a modern physics package see W80.
^"To the Outside World, a Superbomb more Bluff than Bang", Life, vol. 51, no. 19, November 10, 1961, New York, pp. 34–37, 1961, archived from the original on 2021-09-04, retrieved 2010-06-28. Article on the Soviet Tsar Bomba test. Because explosions are spherical in shape and targets are spread out on the relatively flat surface of the earth, numerous smaller weapons cause more destruction. From page 35: "... five five-megaton weapons would demolish a greater area than a single 50-megatonner."
^The United States and the Soviet Union were the only nations to build large nuclear arsenals with every possible type of nuclear weapon. The U.S. had a four-year head start and was the first to produce fissile material and fission weapons, all in 1945. The only Soviet claim for a design first was the Joe 4 detonation on August 12, 1953, said to be the first deliverable hydrogen bomb. However, as Herbert York revealed in The Advisors: Oppenheimer, Teller and the Superbomb (W.H. Freeman, 1976), it was not a true hydrogen bomb (it was a boosted fission weapon of the Sloika/Alarm Clock type, not a two-stage thermonuclear). Soviet dates for the essential elements of warhead miniaturization – boosted, hollow-pit, two-point, air lens primaries – are not available in the open literature, but the larger size of Soviet ballistic missiles is often explained as evidence of an initial Soviet difficulty in miniaturizing warheads.