Nuclear power plant

Angra Nuclear Power Plant in Rio de Janeiro, Brazil

A nuclear power plant (NPP),[1] also known as a nuclear power station (NPS), nuclear generating station (NGS) or atomic power station (APS) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of September 2023, the International Atomic Energy Agency reported that there were 410 nuclear power reactors in operation in 32 countries around the world, and 57 nuclear power reactors under construction.[2][3][4]

Most nuclear power plants use thermal reactors with enriched uranium in a once-through fuel cycle. Fuel is removed when the percentage of neutron absorbing atoms becomes so large that a chain reaction can no longer be sustained, typically three years. It is then cooled for several years in on-site spent fuel pools before being transferred to long-term storage. The spent fuel, though low in volume, is high-level radioactive waste. While its radioactivity decreases exponentially, it must be isolated from the biosphere for hundreds of thousands of years, though newer technologies (like fast reactors) have the potential to significantly reduce this. Because the spent fuel is still mostly fissionable material, some countries (e.g. France and Russia) reprocess their spent fuel by extracting fissile and fertile elements for fabrication into new fuel, although this process is more expensive than producing new fuel from mined uranium.[citation needed] All reactors breed some plutonium-239, which is found in the spent fuel, and because Pu-239 is the preferred material for nuclear weapons, reprocessing is seen as a weapon proliferation risk.

Building a nuclear power plant often spans five to ten years, which can accrue significant financial costs, depending on how the initial investments are financed.[5] Because of this high construction cost and lower operations, maintenance, and fuel costs, nuclear plants are usually used for base load generation, because this maximizes the hours over which the fixed cost of construction can be amortized.[6]

Nuclear power plants have a carbon footprint comparable to that of renewable energy such as solar farms and wind farms,[7][8] and much lower than fossil fuels such as natural gas and coal. Nuclear power plants are among the safest modes of electricity generation,[9] comparable to solar and wind power plants.[10]

  1. ^ Release, Press (16 December 2020). "New modification of Russian VVER-440 fuel loaded at Paks NPP in Hungary".
  2. ^ "PRIS – Home". Iaea.org. Retrieved 17 August 2023.
  3. ^ "World Nuclear Power Reactors 2007–08 and Uranium Requirements". World Nuclear Association. June 9, 2008. Archived from the original on March 3, 2008. Retrieved June 21, 2008.
  4. ^ "Nuclear power plants - types of reactors - U.S. Energy Information Administration (EIA)". www.eia.gov. Retrieved 29 May 2024.
  5. ^ Reduction of Capital Costs of Nuclear Power Plants. OECD / NEA. 8 February 2000. doi:10.1787/9789264180574-en. ISBN 9789264171442. Retrieved 20 December 2021.
  6. ^ "Table A.III.1 − Cost and performance parameters of selected electricity supply technologies" (PDF). The Intergovernmental Panel on Climate Change. Retrieved 20 December 2021.
  7. ^ Rueter, Gero (27 December 2021). "How sustainable is wind power?". Deutsche Welle. Retrieved 28 December 2021. An onshore wind turbine that is newly built today produces around nine grams of CO2 for every kilowatt hour (kWh) it generates ... a new offshore plant in the sea emits seven grams of CO2 per kWh ... solar power plants emit 33 grams CO2 for every kWh generated ... natural gas produces 442 grams CO2 per kWh, power from hard coal 864 grams, and power from lignite, or brown coal, 1034 grams ... nuclear energy accounts for about 117 grams of CO2 per kWh, considering the emissions caused by uranium mining and the construction and operation of nuclear reactors.
  8. ^ "Table A.III.2 − Emissions of selected electricity supply technologies (gCO2eq / kWh)" (PDF). The Intergovernmental Panel on Climate Change. Retrieved 20 December 2021.
  9. ^ Markandya, Anil; Wilkinson, Paul (13 September 2007). "Electricity generation and health". The Lancet. 370 (9591): 979–990. doi:10.1016/S0140-6736(07)61253-7. PMID 17876910. S2CID 25504602. Retrieved 20 December 2021.
  10. ^ "Death rates from energy production per TWh". Our World in Data. Retrieved 22 February 2022.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne