One-parameter group

In mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism

from the real line (as an additive group) to some other topological group . If is injective then , the image, will be a subgroup of that is isomorphic to as an additive group.

One-parameter groups were introduced by Sophus Lie in 1893 to define infinitesimal transformations. According to Lie, an infinitesimal transformation is an infinitely small transformation of the one-parameter group that it generates.[1] It is these infinitesimal transformations that generate a Lie algebra that is used to describe a Lie group of any dimension.

The action of a one-parameter group on a set is known as a flow. A smooth vector field on a manifold, at a point, induces a local flow - a one parameter group of local diffeomorphisms, sending points along integral curves of the vector field. The local flow of a vector field is used to define the Lie derivative of tensor fields along the vector field.

  1. ^ Sophus Lie (1893) Vorlesungen über Continuierliche Gruppen, English translation by D.H. Delphenich, §8, link from Neo-classical Physics

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne