Rashba effect

The Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystals[note 1] and low-dimensional condensed matter systems (such as heterostructures and surface states) similar to the splitting of particles and anti-particles in the Dirac Hamiltonian. The splitting is a combined effect of spin–orbit interaction and asymmetry of the crystal potential, in particular in the direction perpendicular to the two-dimensional plane (as applied to surfaces and heterostructures). This effect is named in honour of Emmanuel Rashba, who discovered it with Valentin I. Sheka in 1959[1] for three-dimensional systems and afterward with Yurii A. Bychkov in 1984 for two-dimensional systems.[2][3][4]

Remarkably, this effect can drive a wide variety of novel physical phenomena, especially operating electron spins by electric fields, even when it is a small correction to the band structure of the two-dimensional metallic state. An example of a physical phenomenon that can be explained by Rashba model is the anisotropic magnetoresistance (AMR).[note 2][5][6][7]

Additionally, superconductors with large Rashba splitting are suggested as possible realizations of the elusive Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state,[8] Majorana fermions and topological p-wave superconductors.[9][10]

Lately, a momentum dependent pseudospin-orbit coupling has been realized in cold atom systems.[11]


Cite error: There are <ref group=note> tags on this page, but the references will not show without a {{reflist|group=note}} template (see the help page).

  1. ^ E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela – Collected Papers (Leningrad), v.II, 162-176 (1959) (in Russian), English translation: Supplemental Material to the paper by G. Bihlmayer, O. Rader, and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015), http://iopscience.iop.org/1367-2630/17/5/050202/media/njp050202_suppdata.pdf.
  2. ^ Yu. A. Bychkov and E. I. Rashba, Properties of a 2D electron gas with a lifted spectrum degeneracy, Sov. Phys. - JETP Lett. 39, 78-81 (1984)
  3. ^ G. Bihlmayer, O. Rader and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015)
  4. ^ Yeom, Han Woong; Grioni, Marco, eds. (May 2015). "Special issue on electron spectroscopy for Rashba spin-orbit interaction" (PDF). Journal of Electron Spectroscopy and Related Phenomena. 201: 1–126. doi:10.1016/j.elspec.2014.10.005. ISSN 0368-2048. Retrieved 28 January 2019.
  5. ^ McGuire, T.; Potter, R. (1975). "Anisotropic magnetoresistance in ferromagnetic 3d alloys". IEEE Transactions on Magnetics. 11 (4): 1018–1038. Bibcode:1975ITM....11.1018M. doi:10.1109/TMAG.1975.1058782.
  6. ^ Schliemann, John; Loss, Daniel (2003). "Anisotropic transport in a two-dimensional electron gas in the presence of spin-orbit coupling". Physical Review B. 68 (16): 165311. arXiv:cond-mat/0306528. Bibcode:2003PhRvB..68p5311S. doi:10.1103/physrevb.68.165311. S2CID 119093889.
  7. ^ Trushin, Maxim; Výborný, Karel; Moraczewski, Peter; Kovalev, Alexey A.; Schliemann, John; Jungwirth, T. (2009). "Anisotropic magnetoresistance of spin-orbit coupled carriers scattered from polarized magnetic impurities". Physical Review B. 80 (13): 134405. arXiv:0904.3785. Bibcode:2009PhRvB..80m4405T. doi:10.1103/PhysRevB.80.134405. S2CID 41048255.
  8. ^ Agterberg, Daniel (2003). "Anisotropic magnetoresistance of spin-orbit coupled carriers scattered from polarized magnetic impurities". Physica C. 387 (1–2): 13–16. Bibcode:2003PhyC..387...13A. doi:10.1016/S0921-4534(03)00634-8.
  9. ^ Sato, Masatoshi & Fujimoto, Satoshi (2009). "Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and non-Abelian statistics". Phys. Rev. B. 79 (9): 094504. arXiv:0811.3864. Bibcode:2009PhRvB..79i4504S. doi:10.1103/PhysRevB.79.094504. S2CID 119182379.
  10. ^ V. Mourik, K. Zuo1, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven (2012). "Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices". Science Express. 1222360 (6084): 1003–1007. arXiv:1204.2792. Bibcode:2012Sci...336.1003M. doi:10.1126/science.1222360. PMID 22499805. S2CID 18447180.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  11. ^ Lin, Y.-J.; K. Jiménez-García; I. B. Spielman (2011). "Spin-orbit-coupled Bose-Einstein condensates". Nature. 471 (7336): 83–86. arXiv:1103.3522. Bibcode:2011Natur.471...83L. doi:10.1038/nature09887. PMID 21368828. S2CID 4329549.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne