Momentum-dependent division
of spin bands in two-dimensional condensed matter systems
Not to be confused with the Rashba–Edelstein effect, which describes the conversion of a bidimensional charge current into a spin accumulation.
The Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystals[note 1] and low-dimensional condensed matter systems (such as heterostructures and surface states) similar to the splitting of particles and anti-particles in the Dirac Hamiltonian. The splitting is a combined effect of spin–orbit interaction and asymmetry of the crystal potential, in particular in the direction perpendicular to the two-dimensional plane (as applied to surfaces and heterostructures). This effect is named in honour of Emmanuel Rashba, who discovered it with Valentin I. Sheka in 1959[1] for three-dimensional systems and afterward with
Yurii A. Bychkov in 1984 for two-dimensional systems.[2][3][4]
Remarkably, this effect can drive a wide variety of novel physical phenomena, especially operating electron spins by electric fields, even when it is a small correction to the band structure of the two-dimensional metallic state. An example of a physical phenomenon that can be explained by Rashba model is the anisotropic magnetoresistance (AMR).[note 2][5][6][7]
Lately, a momentum dependent pseudospin-orbit coupling has been realized in cold atom systems.[11]
Cite error: There are <ref group=note> tags on this page, but the references will not show without a {{reflist|group=note}} template (see the help page).
^E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela – Collected Papers (Leningrad), v.II, 162-176 (1959) (in Russian), English translation: Supplemental Material to the paper by G. Bihlmayer, O. Rader, and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015), http://iopscience.iop.org/1367-2630/17/5/050202/media/njp050202_suppdata.pdf.
^Yu. A. Bychkov and E. I. Rashba, Properties of a 2D electron gas with a lifted spectrum degeneracy, Sov. Phys. - JETP Lett. 39, 78-81 (1984)
^G. Bihlmayer, O. Rader and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015)
^V. Mourik, K. Zuo1, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven (2012). "Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices". Science Express. 1222360 (6084): 1003–1007. arXiv:1204.2792. Bibcode:2012Sci...336.1003M. doi:10.1126/science.1222360. PMID22499805. S2CID18447180.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)