Rayleigh scattering

Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset.

Rayleigh scattering (/ˈrli/ RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation. For light frequencies well below the resonance frequency of the scattering medium (normal dispersion regime), the amount of scattering is inversely proportional to the fourth power of the wavelength (e.g., a blue color is scattered much more than a red color as light propagates through air). The phenomenon is named after the 19th-century British physicist Lord Rayleigh (John William Strutt).[1]

Due to Rayleigh scattering, red and orange colors are more visible during sunset because the blue and violet light has been scattered out of the direct path. Due to removal of such colors, these colors are scattered by dramatically colored skies and monochromatic rainbows.

Rayleigh scattering results from the electric polarizability of the particles. The oscillating electric field of a light wave acts on the charges within a particle, causing them to move at the same frequency. The particle, therefore, becomes a small radiating dipole whose radiation we see as scattered light. The particles may be individual atoms or molecules; it can occur when light travels through transparent solids and liquids, but is most prominently seen in gases.

Rayleigh scattering of sunlight in Earth's atmosphere causes diffuse sky radiation, which is the reason for the blue color of the daytime and twilight sky, as well as the yellowish to reddish hue of the low Sun. Sunlight is also subject to Raman scattering, which changes the rotational state of the molecules and gives rise to polarization effects.[2]

Scattering by particles with a size comparable to, or larger than, the wavelength of the light is typically treated by the Mie theory, the discrete dipole approximation and other computational techniques. Rayleigh scattering applies to particles that are small with respect to wavelengths of light, and that are optically "soft" (i.e., with a refractive index close to 1). Anomalous diffraction theory applies to optically soft but larger particles.

  1. ^ Lord Rayleigh (John Strutt) refined his theory of scattering in a series of papers; see Works.
  2. ^ Young, Andrew T (1981). "Rayleigh scattering". Applied Optics. 20 (4): 533–5. Bibcode:1981ApOpt..20..533Y. doi:10.1364/AO.20.000533. PMID 20309152.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne