Relational quantum mechanics

Relational quantum mechanics (RQM) is an interpretation of quantum mechanics which treats the state of a quantum system as being relational, that is, the state is the relation between the observer and the system. This interpretation was first delineated by Carlo Rovelli in a 1994 preprint,[1] and has since been expanded upon by a number of theorists. It is inspired by the key idea behind special relativity, that the details of an observation depend on the reference frame of the observer, and uses some ideas from Wheeler on quantum information.[2]

The physical content of the theory has not to do with objects themselves, but the relations between them. As Rovelli puts it:

"Quantum mechanics is a theory about the physical description of physical systems relative to other systems, and this is a complete description of the world".[3]

The essential idea behind RQM is that different observers may give different accurate accounts of the same system. For example, to one observer, a system is in a single, "collapsed" eigenstate. To a second observer, the same system is in a superposition of two or more states and the first observer is in a correlated superposition of two or more states. RQM argues that this is a complete picture of the world because the notion of "state" is always relative to some observer. There is no privileged, "real" account. The state vector of conventional quantum mechanics becomes a description of the correlation of some degrees of freedom in the observer, with respect to the observed system. The terms "observer" and "observed" apply to any arbitrary system, microscopic or macroscopic. The classical limit is a consequence of aggregate systems of very highly correlated subsystems. A "measurement event" is thus described as an ordinary physical interaction where two systems become correlated to some degree with respect to each other.

Rovelli criticizes describing this as a form of "observer-dependence" which suggests reality depends upon the presence of a conscious observer, when his point is instead that reality is relational and thus the state of a system can be described even in relation to any physical object and not necessarily a human observer.[4]

The proponents of the relational interpretation argue that this approach resolves some of the traditional interpretational difficulties with quantum mechanics. By giving up our preconception of a global privileged state, issues around the measurement problem and local realism are resolved.

In 2020, Carlo Rovelli published an account of the main ideas of the relational interpretation in his popular book Helgoland, which was published in an English translation in 2021 as Helgoland: Making Sense of the Quantum Revolution.[5]

  1. ^ "www.phyast.pitt.edu/~rovelli/Papers/quant.mec.uu". 2 March 1994. Retrieved 13 May 2020.
  2. ^ Wheeler (1990): pg. 3
  3. ^ Rovelli, C. (1996), "Relational quantum mechanics", International Journal of Theoretical Physics, 35: 1637–1678.
  4. ^ Rovelli, Carlo (2021). Helgoland: Making Sense of the Quantum Revolution. Riverhead Books. pp. 55, 60, 98. ISBN 9780593328903. I want a theory of physics that accounts for the structure of the universe, that clarifies what it is to be an observer in the universe, not a theory that makes the universe depend on me observing it...There are particular systems that are 'observers' in a strict sense of the term: have sense organs and memory, work in a laboratory, interact with a large environment, are macroscopic. But quantum mechanics does not describe only these: it describes the elementary and universal grammar of physical reality underlying not just laboratory observations but every type and instance of interaction. If we look at things in this way, there is nothing special in the 'observations' introduced by Heisenberg: any interaction between two physical objects can be seen as an observation. We must be able to treat any object as an 'observer' when we consider the manifestation of other objects to it. Quantum theory describes the manifestations of objects to one another...The mind does not enter into the equation. Special 'observers' have no real role to play in the theory. The central point is simpler: the properties of an object become manifest when this object interacts with others.
  5. ^ Helgoland: Making Sense of the Quantum Revolution, by Carlo Rovelli, trans. by Erica Segre and Simon Carnell, Riverhead Books (May 25, 2021), ISBN 978-0593328880, ASIN 0593328884

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne