Reverse engineering

The Tupolev Tu-4, a Soviet bomber built by reverse engineering captured Boeing B-29 Superfortresses

Reverse engineering (also known as backwards engineering or back engineering) is a process or method through which one attempts to understand through deductive reasoning how a previously made device, process, system, or piece of software accomplishes a task with very little (if any) insight into exactly how it does so. Depending on the system under consideration and the technologies employed, the knowledge gained during reverse engineering can help with repurposing obsolete objects, doing security analysis, or learning how something works.[1][2][3]

Although the process is specific to the object on which it is being performed, all reverse engineering processes consist of three basic steps: information extraction, modeling, and review. Information extraction is the practice of gathering all relevant information for performing the operation. Modeling is the practice of combining the gathered information into an abstract model, which can be used as a guide for designing the new object or system. Review is the testing of the model to ensure the validity of the chosen abstract.[1] Reverse engineering is applicable in the fields of computer engineering, mechanical engineering, design, electronic engineering, software engineering, chemical engineering,[4] and systems biology.[5]

  1. ^ a b "What is Reverse-engineering? How Does It Work". SearchSoftwareQuality. Retrieved 27 July 2022.
  2. ^ "Reverse Engineering". ethics.csc.ncsu.edu. Retrieved 27 July 2022.
  3. ^ Garcia, Jorge (December 2015). "Un-building blocks: a model of reverse engineering and applicable heuristics" (PDF). Core.ac.uk. Retrieved 4 June 2023.
  4. ^ Thayer, Ken. "How Does Reverse Engineering Work?". globalspec. IEEE Global Spec. Retrieved 26 February 2018.
  5. ^ Villaverde, Alejandro F.; Banga, Julio R. (6 February 2014). "Reverse engineering and identification in systems biology: strategies, perspectives and challenges". Journal of the Royal Society Interface. 11 (91): 20130505. doi:10.1098/rsif.2013.0505. PMC 3869153. PMID 24307566.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne